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Using a model of the functional MRI (fMRI) impulse
response based on published data, we have demon-
strated that the form of the fMRI response to stimuli of
freely varied timing can be modeled well by convolu-
tion of the impulse responsewith the behavioral stimu-
lus. The amplitudes of the responses as a function of
parametrically varied behavioral conditions are fitted
well using a piecewise linear approximation. Use of the
combinedmodel, in conjunctionwith correlation analy-
sis, results in an increase in sensitivity for the MRI
study. This approach, based on the well-established
methods of linear systems analysis, also allows a quan-
titative comparison of the response amplitudes across
subjects to a broad range of behavioral conditions. Fit
parameters, derived from the amplitude data, are rela-
tively insensitive to a variety of MRI-related artifacts
and yield results that are compared readily across
subjects. r 1997Academic Press

INTRODUCTION

Most of the data analysis approaches used in func-
tional magnetic resonance imaging (fMRI) have their
origin in the established methodology of positron emis-
sion tomography (PET) activation imaging. The two
techniques differ in important ways, however, and it
may be possible to achieve greater power (in the
statistical sense) with fMRI by using analysis strate-
gies that exploit its unique features. Both PET and
fMRI take advantage of local changes in blood flow
associated with increased or decreased neural activity
(Belliveau et al., 1991; Kwong et al., 1992; Mazziotta
and Phelps, 1984; Ogawa et al., 1992; Roy and Sherring-
ton, 1890). With H2

15O PET, local increases in blood
flow result in accumulation of radioactive tracer—
typically collected over 30 s or so—the image intensity
reflects the integral of the underlying neural activity.
In fMRI, the images are acquired much more rapidly
[using echo-planar imaging (Cohen andWeisskoff, 1991;
Mansfield, 1977), acquisition times of less than 0.1 s are
common] and the time course of the blood flow changes
is revealed. In our original studies, we noted that the

observed signal intensity change in MRI lagged the
stimulus by several seconds (Kwong et al., 1992). Opti-
cal imaging experiments have shown that blood flow
changes display a multiphasic time course, presumably
reflecting an initial oxygen depletion of the capillary
bed, with a response latency of about 2 s, followed by a
hyperoxygenation condition, in which increased blood
flow exceeds local metabolic demand (Malonek and Grin-
vald, 1996). The significance of the excess oxygen deliv-
ery is not yet clear—it may reflect the need for delivery
of other substrates, an anticipatory response for subse-
quent activations, a requirement for the clearance of
metabolic byproducts, a failure of the vasculature to
regulate blood flow precisely to the area of increased
activity (Malonek and Grinvald, 1996) or, as Buxton
has suggested recently (Buxton and Frank, 1997), it
may be a consequence of the limited transit time of
oxygenated blood through the capillary vasculature.
In addition to displaying a complex time course, the

magnitude of the fMRI response does not bear an
obvious simple relationship to either the underlying
neural activity or the behavior (Boynton et al., 1996).
Even in the earliest reported studies, Kwong et al.
(1992) noted that the MR signal increases were greater
to visual stimulation at 8 Hz than to higher or lower
rates. MR signal intensities are traditionally expressed
in arbitrary units, as a plethora of factors affect the
absolute signal intensity—tissue conductivity, coil place-
ment, pulse sequence timing, tissue orientation, and
magnetic field strength all play major roles. A conse-
quence is that there exists no standard metric by which
to describe the fMRI signal changes, making compari-
sons across studies difficult.
Our goal, in the present paper, is to address the

problems of the fMRI time course and response magni-
tude by using a linear systems approach of a class
similar to that reported recently by Boynton et al. and
by Friston and colleagues (Boynton et al., 1996; Friston
et al., 1994). We present data from the human visual
and motor systems that suggest that this method will
have useful applications in functional imaging. Our
new method easily generalizes to the analysis of data
sets collectedwith temporally irregular task periods and

NEUROIMAGE 6, 93–103 (1997)
ARTICLE NO. NI970278

93 1053-8119/97 $25.00
Copyright r 1997 by Academic Press

All rights of reproduction in any form reserved.



with parametric experimental designs (in the sense
used by VanMeter et al. (1995)).

Typical fMRI Data Analysis Strategies

An important characteristic of functional imaging by
magnetic resonance is that the signal changes are
typically small (most experiments are presently per-
formed at 1.5 T, where they are only a few percent) and
occur in a background of substantial signal fluctuation
that is not well correlated with the stimuli (Weisskoff et
al., 1993); contrast to noise ratios (CNRs) of 3 or 4 to 1
are typical, and a CNR of more than 8 is very unusual
(and probably associated with large vessels). Thus, one
of the key challenges in fMRI is the artifact-free
detection of these small signal changes. One strategy,
inherited from PET (Friston et al., 1991), has been to
look for changes in the mean signal intensity of the MR
data during different behavioral conditions using Stu-
dent’s t test. Where no temporal information is avail-
able (as in traditional PET experiments) this is prob-
ably the best possible method, as the commonly used t
test has unexcelled statistical power in detecting
changes in mean (Press et al., 1992). An alternative,
though conceptually similar, analysis is to compare the
intensity distributions in the behavioral conditions
using the Kolmogorov-Smirnov (K-S) statistic. While
not quite as powerful as the t test for detecting differ-
ences in mean, the K-S test can also be used to detect
other differences in distribution, such as increased
variance. It is a useful test when very little a priori
information is available to differentiate the MR signal
under different conditions. As many fMRI researchers
have seen, however, type I errors are distressingly
common in simple applications of the t or K-S statistic
(see, e.g., Cohen et al., 1996b). In response, some have
advocated the use of ‘‘split-half ’’ t test, which requires
that the same pixel location exceed some predeter-
mined t threshold on two independent acquisitions
(Schneider et al., 1993); the split-half test is very
conservative and has been used as a way to improve
detection rates for activation without introducing unac-
ceptably high false positive rates (Constable et al.,
1995). Some have incorporated additional criteria,
such as the number of contiguous locations of increased
signal intensity (Schneider et al., 1993; Worsley et al.,
1992), which impose somewhat arbitrary constraints
on the minimum size of an ‘‘activated’’ brain region.
An approach using multiple linear regression was re-
cently outlined by Friston et al. (1995) that takes into
account the time course of the fMRI signal in calculat-
ing t statistics.
An alternative method, pioneered by Bandettini, is to

use correlation statistics to estimate the extent to
which the signal in any pixel covaries with the behav-
ioral conditions (Bandettini et al., 1993). As the fMRI
data are modeled poorly by differences in mean, espe-

cially when the task conditions are changing rapidly
compared to the blood flow response, the correlation
technique is frequently more appropriate than the t test.
For slowly varying task conditions, the pixel intensity
time course is usually cross-correlated with a boxcar
function (square wave) and for more rapidly varying
tasks a sinusoidal reference is commonly used (we note
that for periodic tasks this is always a reasonable
estimate, as it is the first component of the Fourier
series describing the time course). Engel described the
use of a periodic visual stimulus, whose position phase
was linked to its spatial location (Engel et al., 1994); he
and others (Sereno et al., 1995) have used similar
stimuli to derive retinotopic maps of the human visual
cortex. The method described below also exploits the
correlation approach.

Linear Systems Analysis

The well-developed tools of linear systems analysis
(see, for example, Liu and Liu, 1974) used widely in
electrical and mechanical engineering can be used to
predict the responses of certain systems to a wide
variety of inputs. In particular, for a true linear and
time-invariant (LTI) system, the response to an arbi-
trary input is equal to the convolution of that input
with the system’s so-called impulse response or trans-
fer function. From the outset, we note that no physical
system actually obeys these constraints. On the other
hand, the technique gains its tremendous power from
the realization that many systems closely approximate
LTI behavior over a useful range of boundary condi-
tions. Our goal in the present work has been to develop
an LTI model of the observed fMRI signal response.
This modeled response is then correlated with the
signal intensity time course in each voxel in the MR
image series to detect active regions.
To the extent that the transfer function of the fMRI

signal is modeled properly, it is possible to anticipate
the response to more complex stimuli. It has been
shown, for example, that the magnitude of the observed
MR signal has a highly nonlinear response to varia-
tions in stimulus characteristics, such as the rate of a
blinking light stimulus (Kwong et al., 1992), the inten-
sity contrast of a visual stimulus (Tootell et al., 1995), or
the rate of handmotion (Bookheimer et al., 1995; Cohen
et al., 1995; Dobkin et al., 1996; VanMeter et al., 1995).
We proposed that the response profiles of different
brain regions to parametric variations in stimulus
characteristics form a powerful tool for understanding
and detecting component processing of complex stimuli
and behaviors (Cohen et al., 1995) that is more ame-
nable to physiologic interpretation than is a t statistic,
a probability level, or a correlation coefficient. Here, we
show that with a reasonable estimate of the brain im-
pulse response, we can perform parametric analyses
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that respect the temporal characteristics of the brain
blood flow response.

METHODS

Response Models

For the present experiments, the brain impulse
response was estimated based on data collected by R. L.
Savoy and colleagues (Savoy et al., 1994). Summarized
briefly, they presented visual flash stimuli of various
durations and averaged the fMRI signal time course in
visual cortex to repeated stimulation in order to assess
the sensitivity of fMRI recordings to very short dura-
tion stimuli; their experiments used flashes of 34 ms,
100 ms, or 1 s. We fitted the data from the averaged
responses to 1-s stimuli to a three-parameter gamma
variate function using the Levenberg-Marquardt algo-
rithm, as shown in Fig. 1. In these experiments, we use
the parameter values

SI(t) 5 kt8.60e2t/0.547, (1)

where k is adjusted to give unit amplitude at equilib-
rium, i.e., when stimuli are repeated often enough for
the estimated response to reach a constant peak. To
form estimates of the blood flow response to arbitrary
task inputs, we form the convolution of the task with
this blood flow response. This is shown for a simple
Off–On–Off–On–Off task in Fig. 2. The typical lag in
the vascular-based MR response is clearly visible in the
estimated response, suggesting visually that this im-
pulse response estimate is reasonable. A chief advan-
tage of our method, however, will be its ability to
estimate the responses to more complex behavioral
conditions.

MR Imaging

Subjects

All subjects for this study were normal volunteers
between 25 and 40 years of age without neurological
abnormalities. All experiments were performed under
informed consent and guidelines approved by theUCLA
Human Subjects Protection Committee.

Imaging

We performed our scanning on a 3-T magnetic reso-
nance imaging system (General Electric, Waukesha,
WI) designed specially for applications in functional
MRI (Cohen et al., 1996a). Prior to any anatomical
imaging, we shimmed the magnet for linear and qua-
dratic terms using an image-based ‘‘quickshim’’ proce-
dure provided by the manufacturer and modified by us
to give corrected values. After shimming, the field
homogeneity over the entire brain was typically better
than 50 Hz (,0.5 ppm). We then acquired localizer
images using conventional sagittal fast SPGR imaging
(TR5 13.9, TE5 2.8 ms, Flip5 20°, TI5 700, 32 slices,
5 mm 3D, 256 3 256 matrix). A series of 4-mm axial
echo-planar images (EPI) (Advanced NMR Systems,
Wilmington, MA) was then taken with 1-mm gaps to
span the range from the superior pole to the base of the
cerebrum. Our EPI scans are performed with a sinusoi-
dal readout gradient oscillating at 1.4 kHz to minimize
shape distortions (Farzaneh et al., 1990). This frequency
and resolution together necessitate gradient strengths
of approximately 3.6 G/cm. For these T2-weighted
images, the matrix size was 128 3 128, FOV 5 20 cm
(pixel size 1.5 3 1.5 mm), half-Fourier acquisition (Co-
hen and Weisskoff, 1991; Margosian, 1985), TR 5 `.
From the axial slices, we identified one to three slices,
on the basis of sulcal anatomy, that contained the hand
sensorimotor area anterior and posterior to the central
sulcus; these were used for the subsequent functional
imaging studies. For the visual system experiment, we
identified the calcarine fissure from sagittal slices and

FIG. 1. Averaged fMRI response (·) to 10 repetitions of a 1-s light
flash stimulus as measured in the visual cortex of a volunteer (data
from R. Savoy). Shown in a thin line is the fitted response using a
gamma variate model (Levenberg-Marquardt algorithm).

FIG. 2. Estimated fMRI response to visual stimulation consisting
of alternating 45-s rest and stimulus periods. The gray bars indicate
stimulus periods and the estimated response is formed by convolving
the stimulus time course (dashed lines) with the impulse function of
Fig. 1.

95PARAMETRIC LTI fMRI ANALYSIS



prescribed graphically a series of slice orthogonal to the
line that best fit this sulcus.
We acquired functional images with BOLD contrast

weighting by using a gradient echo imaging sequence
with an echo time of 45 ms, equal to the measured T2*
of the brain on our system. For the motor experiments,
we used a TR of 2 s and a flip angle of 80°; for the visual
tasks we used a TR of 2.5 s. The measured T1 of the
brain gray matter in our system brain is approximately
1200 ms; our imaging parameters were thus optimized
for maximal signal intensity at the expense of some
blood inflow-dependent contrast. These images were
acquired with a matrix size of 64 3 128 over the 20-cm
FOV, resulting in an in-plane resolution of approxi-
mately 1.5 mm 3 3 mm.

Behavioral Protocols

Visual system task. Subjects were presented a flash-
ing checkerboard pattern, with black and white fea-
tures switching at approximately 8 Hz. The visual
stimulus was generated on an Apple Macintosh com-
puter system (Apple Computer, Cupertino, CA) and
was presented binocularly on a magnet compatible
LCD television system (Resonance Technology, Van
Nuys, CA). Stimuli subtended approximately 15° of
visual angle. Subjects were instructed to look at a
fixation point present during the stimulation. During
rest periods, the screen was switched to a neutral gray
with the same mean luminance as the checkerboard
stimulus.
Motor tasks. To test our model for complex timing,

we used a finger opposition task in which the subject
was instructed to alternately oppose each finger to the
thumb in a complex repeating order (i.e., 1-3-2-4-4-3-2-
1 . . .) in brief (10 s), irregular intervals as described in
the legend to Fig. 4A. Based on our models, we expected
that this would result in fMRI signal changes 90° out of
phase with the behavior (Fig. 4A). The timing was
designed also as an example of a protocol not readily
analyzable using sinusoidal models.
For the motor rate experiments, the subjects listened

to a click stimulus, generated by a metronome, at three
different rates of 52, 104, and 208 beats/min (0.867,
1.73, and 3.47 Hz) delivered binaurally through MRI
compatible headphones (Resonance Technology). The
subjects performed the finger opposition task, as de-
scribed above, in time with the click stimulus, using the
dominant hand. Periods of finger motion were alter-
nated with periods of rest, and the rate order was
counterbalanced across subjects, or, where time al-
lowed in one subject, across trials (Fig. 5). The auditory
stimulus remained on during the rest periods, and the
rate changes occurred halfway through the rest blocks.
The subjects were given brief verbal instructions (‘‘Move
now’’; ‘‘Rest now.’’) to indicate when they should start or
stop the handmotions.All subjects were tested for their

ability to perform the motor task at the given rates and
were interviewed following the scan to determine if
they experienced any difficulty. None did.

Data Analysis

Our data analysis approach was designed to compare
and contrast analysis strategies. In all cases the images
were first thresholded using a histogram normalization
procedure so that only pixels within the head were
evaluated. Our algorithm detects the most frequently
occurring value within the bottom 15% of the signal
range and sets the threshold to three times this value.
The statistical tests were given signed values to indi-
cate regions which were correlated or anticorrelated
with the behavioral tasks. In the experiments reported
here, only positive changes were appreciable. The final
statistical maps were thresholded, as indicated below,
and superimposed on the coplanar EPI images ac-
quired immediately prior to the functional studies. For
the data comparing response amplitudes across sub-
jects (Table 1), the images were subjected to a 3 3 3
in-plane Hanning filter to minimize noise prior to
statistical analysis.
Student’s t test. Images acquired during periods of

stimulation were pooled and compared pixel-by-pixel
with periods of rest using Student’s t test corrected for
unequal variance. To account for the characteristic lag
between stimulus and fMRI response, we also calcu-
lated the t statistic with time shifts of 2 to 8 s. In our
studies, a lag of 6 s resulted in the maximum t values.
Correlation maps and intensity estimates. We con-

structed the correlationmaps in several steps. First, we
identified the motor cortex anatomically on the basis of

TABLE 1

Comparison of Statistical Results Using Student’s t Test or
the Pearson Correlation Coefficient to Detect Activation of
Hand Motor Cortex from the MRI Time Intensity Curves

Reference method
Raw

statistic Equivalent t

t statistic 7.57
Time-shifted (6 s) t statistic 21.99
Correlation with square function 0.5717 10.34
Correlation with shifted square function 0.8959 66.64
Correlation with sine function 0.7707 26.04
Correlation with shifted sine function 0.9086 76.96
Correlation with linear estimate 0.9337 109.05
Correlation with weighted linear estimate 0.9645 210.69

Note. As the MRI response clearly lags the stimulus, the tests were
also compared with the behavioral input shifted by 6 s to maximize
the statistics. The final row in the table shows the correlation
coefficient calculated between the actual MR data and the response
estimate of Fig. 6. To compare the results of the t and correlation
statistics, the last column shows the probability of type 1 error with
these data.
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sulcal anatomy, as described above, and then on the
basis of functional anatomy. For the latter, we deter-
mined the correlation coefficient between the response
estimate, computed as described above, for only the
highest stimulus rate (which yielded the strongest
response) and the pixel-wise signal intensities in the
functional image series. Pixels whose signal intensity
changes had a correlation coefficient of 0.5 or greater
with the stimulus were then selected.
The signal intensity changes were computed as the

slope of the linear fit of the MR signal intensity to the
estimated response.Byusing this algorithm, themeasured
intensity changes arematched to the temporal characteris-
tics of the fMRI response. The slope was computed on a
pixel-by-pixel basis and expressed as the percentage signal
change at the selected stimulus rate (e.g., Fig. 7).
The overall time course was fitted to the response

estimates by determining the slope, as above, for each
stimulus rate individually. The response estimate over-
all was formed by convolving the amplitude-weighted
description of the behavioral task with the impulse
response shown above, weighted by the response mag-
nitude at each stimulus rate. This response estimate is
therefore a description of the response pattern of
primary motor cortex to parametrically varied input.1

RESULTS

Signal Intensity Time Course

As reported inmany publications using similar proto-
cols (e.g., Kwong et al., 1992), periods of visual stimula-
tion were followed at a latency of a few seconds by
increased signal intensities in the visual areas of the
brain, including the calcarine cortex, or V1. After
cessation of the visual stimulation, the signal did not
return immediately to baseline, but instead decreased
gradually over approximately 15 s. The estimated
response, based on the convolution method, and the
corresponding measured data are shown in Fig. 3.
Since the impulse response form was determined

within the visual system, albeit from another scanner
at a lower field strength, on a different subject, and
using slightly different imaging procedures, we were
gratified to see that the response estimate approxi-
mated many features of the measured data, including
the delayed rise to peak response and the slow decay to
baseline signal. Note that the signal increase is large
(approximately 30%) at this field strength as predicted
by Fisel, Turner, and others (Fisel et al., 1991; Turner et
al., 1993).
The results of the motor timing task, shown in Fig.

4A, also demonstrated that the response form was

estimated well using the convolution procedure, even
though the impulse response was derived from an
entirely different neural system. In this case, because
of the rapid left–right hand alternation, the measured
responses were shown clearly to lag the behavior by
90°. A t map of the differences in mean during periods
left and right hand movement (Fig. 4B) shows no focal
in right motor cortex and artifactually elevated signal
in left motor cortex (due to the phase shift). The
correlation map with the estimated response (Fig. 4C)
demonstrates clearly several areas of activity near the
central sulcus (presumably primary motor and sensory
areas) and in the midline (representing supplementary
motor areas). Figure 4D is considered in more detail
below. Clearly, the timing for the task in Fig. 4 was
designed as a worst case scenario for a naive analysis
using the t statistic in fMRI. It does, however, illustrate
just how badly the interpretation of the MRI data can
be distorted if the signal time course is not respected. In
Table 1, we show how the addition of a phase lag can
mitigate, but not eliminate, this problem.
We used the linear fitting procedure outlined above

to provide a quantitative estimate of the response
magnitude at each handmotion frequency. These inten-
sity weightings were applied to the impulse response
function of Fig. 1 to come up with the estimated
response profile shown in Fig. 5, which shows the signal
intensity time course, the amplitude-weighted fit to the
time course estimate, and the error term, created by
subtracting the actual data from the fitted response.
The responses were clearly nonlinear in amplitude as a
function of finger tapping rate [as noted previously
(Cohen, 1996; Cohen et al., 1995)]. The error term was
uncorrelated with the stimulus (R2 9 0.01), suggesting
that the model explained most of the stimulus corre-
lated signal. Figure 5 shows the locations of pixels with
correlation coefficients greater than 0.3 or less than

1 The software tools used to perform this data analysis are freely
available for non-commercial academic use at our world-wide web
site: http://brainmapping.loni.ucla.edu.

FIG. 3. A priori response estimate for the flashing checkerboard
visual stimulation protocol. (Top) Measured signal intensity time
course in calcarine cortex. Gray bars indicate periods of visual
stimulation.
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20.3 (anti-correlated) and their estimated response
magnitudes. Figure 9 compares the response to three
different tapping rates for two additional subjects.
Figure 7 demonstrates the linear fitting results. The

data are ‘‘rotated’’ such that the fMRI signal is plotted
as a function of the response estimate. The slope of that
fit is used for magnitude estimation. In this case, a
signal increase of 10.2% is associated with a rate of 208
taps/min. Note that the linear fit is a good estimator to
the transformed data, showing an R2 of 0.930.
Figure 8 shows a map of the correlation coefficient

and of the slope of the signal change (from the same
data set as in Fig. 5) as determined by this fitting
procedure. Comparing the two maps, it is obvious that
they provide different but complementary information.
The regions showing the greatest signal change may
not be the best correlated with the stimulus and vice
versa.

Comparison of Statistical Results

As a measure of the relative performance of our
linear estimation procedure, for the same 31-pixel ROI
we compared the t statistic and correlation with square
functions and sinusoids, with and without a time shift,
to the impulse convolution approach, with amplitude
weightings determined by measurement of the signal
change. These results are shown in Table 1 and are
presented as equivalent t statistics (Press et al., 1992).2
Formally, the correlation with the weighted linear
estimate is of dubious statistical value, as the template

2 The correlation coefficient can be converted conservatively to a t
distribution according to the formula

t 5 ccŒ (N 2 2)

((1 2 cc)2)
.

FIG. 4. (A) Time course of motor timing experiment and the estimated and actual fMRI responses. Dark and light gray bars represent
periods of right- and left-hand motion, respectively, as indicated also by the letters R and L. During these periods the subject was instructed to
repeatedly oppose her fingers to her thumb as rapidly as possible in the order 1-2-3-4-4-3-2-1 using the indicated hand. The hands were used in
alternation for 10-s intervals, in some cases with intervening rest intervals. The behavioral time course for the left and right hands were
convolved, individually, with the impulse response of Fig. 1, resulting in the estimated responses shown by the heavy solid and dashed curves,
for right and left hands, respectively, as shown on the graph at bottom. These curves are seen to lag the behavior by about 90°. The measured
fMRI time course is shown in lighter solid and dashed lines at the top of the graph for the corresponding (contralateral) primary motor and
sensory areas. The signal amplitudes are compared to the mean signal at rest. (B) Map of t statistic comparing periods of left- and right-hand
motion. Because of the phase lag between handmotion and activation, the simple tmap fails to show regions of strong focal activation. (C)Map
of pixels showing a correlation of 0.5 or greater between the MR signal intensity and the estimated responses fromA. Obvious focal areas are
evident in the cortex contralateral to the hand motion. Some midline structures also show hand-specific activity. (D) Estimated response
amplitude (see below) for pixels detected in C.
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was formed based on the data. We present the correla-
tion as evidence of the completeness of the fit. Although
we eschew the use of probability estimators in fMRI in
many cases (Cohen et al., 1996b), the data collected
suggest a probability of type I error, using this method,
of much less than 1 3 10299.

Parametric Characterization of fMRI Response

The slope-fitting procedure outlined above allows us
to estimate the magnitude of the fMRI response to
different stimulus conditions. The signal intensity in-
creases calculated from the maximum finger tapping
rate ranged from 6 to 10.2% in our subjects. Based on

prior work (Cohen et al., 1995) we anticipated a logarith-
mic signal intensity (SI) response to the stimulus of the
form

SI 5 A(1 2 e2r/B), (2)

where A is a fit constant describing the amplitude and
B describes the relationship among finger tapping rate,
r, and signal change. Normalizing the data from three
subjects to the signal change at the maximum, by
setting A 5 1 we used the Levenberg-Marquardt proce-
dure to estimateB for all subjects. In these experiments
B ranged from 44.2 to 75.3, showing reasonable unifor-

FIG. 4.—Continued.
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mity across subjects of the response form. These data
are shown in Fig. 9. We note that the response magni-
tude, A, is a less effective comparison, as it may depend
on factors such as the RF flip angle in that region of the
brain, the size, shape, and orientation of blood vessels,
and a wide variety of other factors.

DISCUSSION

In this paper, we have developed a model for the
temporal behavior of fMRI signals that is based on the
theory of linear systems. We have then extended these
results to a procedure for amplitude fitting that is

piecewise linear. Together these results may be applied
to the analysis of relatively complex behavioral condi-
tions with irregular timing and variable intensities.
While many behavioral and sensory conditions may be
evaluated with stereotyped periodic timing, this still
represents a practical limitation on fMRI protocols. For
example, the data shown in Fig. 4 suggest that in
certain behaviorally reasonable protocols the time lag
between activity and response can lead to an apparent
180° phase shift in signal. In that example, left hand
motor activity appeared using simple t statistics to be
linked to left motor cortex signal changes. Using our
fitting procedure, it is possible to predict brain re-
sponses to irregularly timed stimuli (an advantage of
the t statistic as well), while respecting the intrinsic
fMRI time course.
Behavioral protocols of interest in functional imaging

may be variable in intensity as well as in rate, and the
relationship between stimulus characteristics and the
magnitude of signal change can help to differentiate
functionally distinct brain regions. The small and
relatively homogeneous residual errors after amplitude-
weighted curve response prediction (Fig. 5) demon-
strate that the convolution approach can help to extract
intensity patterns of fMRI signal changes. Although
absolute signal intensity is not a reliable measure in
fMRI, the parametric signal response can be readily
normalized, as in Fig. 5; after this transformation, they
are relatively stable across subjects, as suggested in the
data of Figs. 6 and 9. A typical procedure might be to fit
the fMRI response to a known locus of activation and to
use the fitted function as a template to explore other
regions of cortex in the same or different subjects that
might behave similarly or differently.
Compared to either simple application of the t statis-

tic or to correlation with less accurate reference func-
tions such as square or sine waves, the convolution

FIG. 5. Heavy lines show the fMRI signal intensity as a function
of finger tapping rate. The light lines show the time intensity
behavior predicted using the LTI approach. At bottom is the residual
error—simply the difference of the two curves at top. The finger
tapping rate, in counts per minute, is shown by the numbers at the
top. Gray regions indicate periods of hand motion.

FIG. 6. (Left and right) fMRI signal intensity as a function of
finger tapping rate. Heavy lines show the time intensity behavior
predicted using the LTI approach, lighter lines and points show the
actual data from two different subjects.

FIG. 7. Actual fMRI signal strength plotted as a function of the
estimated response obtained by the convolution and fitting proce-
dure, from the same subject shown in Fig. 6. Line indicates the best
linear fit. The slope of this line can be used as an estimate of the
response intensity.
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approach offers gains in both sensitivity and specificity.
The dramatic increases in the t statistic, shown in
Table 1, attest to this fact. Although correlation with a
time-shifted sine function is almost as powerful in this
case, out method allows fitting to data of arbitrary
timing (e.g., Fig. 4) that could not be fitted to sinusoids.
Friston et al. (1994) showed that the observed fMRI

response could be estimated by convolution of the
behavioral timing with a Poisson function describing
the autocorrelation of the fMRI signal. This approach
has the advantage that it can be derived from the
actual data set. Further, the form of the function used is
grossly similar to the impulse response used in this
report. The Friston method also has the advantage that
it would be possible to determine a separate autocorre-
lation function for each voxel in the imaging volume
and thus to account for spatial variations in this
parameter, though that is not proposed in their work. It
is not safe to assume, however, that the impulse

response is a Poisson function, and we felt that it was
better to use the more directly measured response
function. Boynton and colleagues (Boynton et al., 1996)
have demonstrated some of the boundary conditions of
the linear approximation for fitting of the time curves.
Indeed, our own data (Fig. 5) suggest limitations to the
accuracy of the temporal fit. For example, in several of
the on–off periods, the model timing appeared to be
slightly slower than the actual response, resulting in
an error term that was significant during rising and
falling phases of the time intensity time course. More
than likely, this results from using an impulse response
derived from the visual cortex to model motor activity
in parietal areas, where the hemodynamic delays may
differ. Clearly, the technique will becomemore powerful
as better impulse response estimates become available
for different cortical regions. One approach to deriving
these might be mathematical deconvolution of the
fMRI time course and behavior—an area that we are
exploring currently. Although the tests included here
are by no means comprehensive, they indicate a range
of conditions in which the methods of linear systems
analysis may be used to predict the fMRI responses.
Our own work, for example, involves the detection of
signal changes associated with spontaneously occur-
ring hallucinations (Cohen and Green, 1995) or epilep-
tic seizures (Bookheimer, 1996; Bookheimer and Co-
hen, in press) as in the studies reported by Warach and
Jackson (Jackson et al., 1994; Warach et al., 1994). In
these cases the analysis procedure cannot depend on
the presence of periods of fixed duration or rate. Our
procedure places no such constraints on the experimen-
tal design and may be used in studies without prior
knowledge of the behavioral or stimulus time course.
Because the impulse response is causal (affecting the
signals only for images which follow the stimulus), it

FIG. 8. Map of activation for the same subject, with color intensity representing the value of the correlation coefficient (left) and slope fit
(right), as indicated by the color bars in the center. Positive values are indicated in colors from red to yellow; negative values range from blue to
green.

FIG. 9. Normalized response amplitudes for three subjects as a
function of finger tapping rates. Lines represent best fit to a function
of the form: SI 5 (1 2 exp(2r/B)), where r is the tapping rate. The
fitted values of B are indicated for each subject.
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may be implemented in a real-time analysis system, as
is the goal of our laboratory (Hong, et al., 1997). Recent
work by Menon at very high magnetic field strength
has suggested that the initial hypo-oxygenation phase
may be seen with MRI (Menon et al., 1995). As we have
not yet replicated this finding in our own experiments,
this behavior has not been included in the models
developed here, though it may be incorporated readily.
MRI activation imaging has suffered from the limita-

tion that the statistical analyses used to indicate the
presence or absence of activation responses involve
numerical transformations of the data that tend to
distort the apparent activation magnitude, since the
statistical confidence is scaled inversely with the local
uncorrelated signal fluctuation at each location. This
limitation is confounded further in PET studies that
frequently require the pooling of data from several
subjects. In this case, the statistical detectability of a
regional activation is also modulated by the intersub-
ject variability of the individual’s structural or func-
tional anatomy. The slope and correlation maps (e.g.,
Figs. 4 and 8) show different information. A simple
explanation might be that the areas of large signal
change represent veins draining a relatively large
territory. While their high blood concentration results
in relatively large signal change, their pulsatility re-
duces their correlation with the stimulus. Alterna-
tively, it may be that our impulse response is for some
reason a poor model of the fMRI response in those
regions. The latter possibility is particularly important
for parametric study designs. Neither our model nor
other models of which we are aware account fully for
regional differences in cerebrovascular coupling or non-
stationary autocorrelation structures, and both of these
may be important factors influencing the form of the
fMRI response. The piecewise linear approach that we
have adopted to approximating the parametric form of
the response is not the only, or even necessarily the
best, choice. In their 1995 paper, Friston et al. described
the use of multiple linear regression perform equiva-
lent fits. The two approaches are computationally
similar, and either can be used to describe the func-
tional form of the fMRI signal response.
We believe that an important use of the parametric

analysis method developed here will be its ability to
differentiate the activation of various brain regions on
the basis of details of their response profiles. In a PET
study, for example, Price et al. (1992) showed that the
rCBF in primary auditory cortex was correlated with
the rate of word presentation, whereas the rCBF in
superior temporal gyrus was not, though both areas
showed increased rCBF with words as opposed to rest.
Grasby et al. used a parametric analysis to study the
relationship between PET-derived rCBF and word list
length. In a PET study of the activation magnitude as a
function of finger tapping rate, Blinkenberg and co-

workers reported that the slope of the response as a
function of tapping rate distinguished among cortical
areas (Simpson et al., 1995). A paper by VanMeter and
colleagues uses parametric analyses to characterize the
activation of a variety of motor and premotor regions as
a function of the rate of a motor task. Recently, Büchel
and colleagues (Büchel et al., 1996) developed a nonlin-
ear regression approach, based on the general linear
model, which promises to yield results analogous to
ours in PET imaging, albeit without the ability to fit the
signal time course. In studies of the effects of stimulus
presentation rate in the auditory cortex, Binder and
colleagues reported response profiles qualitatively simi-
lar to thosewe showhere in themotor system (Schroeder
et al., 1995). While with suitable assumptions and
normalization, it is reasonable to discuss PET experi-
ments in terms of cerebral blood flow, functional MRI
using the BOLDmechanism does not lend itself readily
to this sort of quantitation. We believe that our meth-
ods act to overcome this limitation and thereby allow
the direct comparisons of activation magnitudes across
subjects.
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