
Real-time functional MRI Classification of Brain
States using Markov-SVM Hybrid Models: Peering

inside the rt-fMRI black box.

Ariana Anderson ariana82@ucla.edu Dianna Han Pamela K. Douglas

Jennifer Bramen Mark S. Cohen

Abstract

Real-time functional MRI (rt-fMRI) methods provide the ability to predict and de-
tect online changes in cognitive states. Applications require appropriate selection
of features, preprocessing routines, and efficient computational models in order to
be both practical to implement and deliver interpretable results. We predict video
activity in nicotine-addicted subjects using both regional spatial averages and pre-
constructed independent component spatial maps we refer to as an ”IC dictionary.”
We found that this dictionary predicted better than the anatomical summaries and
was less sensitive to preprocessing steps. When prior state information was incor-
porated using hybrid SVM-Markov models, the online models were able to predict
even more accurately in real-time whether an individual was viewing a video while
either resisting or indulging in nicotine cravings. Collectively, this work proposes
and evaluates models that could be used for biofeedback. The IC dictionary of-
fered an interpretable feature set proposing functional networks responsible for
cognitive activity. We explore what is inside the black box of real-time fMRI, and
examine both the advantages and shortcomings when machine learning methods
are applied to predict and interpret cognitive states in the real-time context.

1 Introduction

Functional MRI (fMRI) is a proven imaging technique to detect and characterize changes in cogni-
tive states. Current technology and algorithms are fast enough to create reliable maps of the topog-
raphy of brain activity in a fraction of a second, producing a research field knows as real-time fMRI
(rt-fMRI) ([1],[2],[3],[4],[5]). In rt-fMRI, incoming fMRI signal is analyzed immediately, providing
representations of underlying conditions or states and quality control ([6],[7]). Thus far, rt-fMRI has
been applied to functional localization and biofeedback with some success ([8],[9],[10]). Functional
localizers based on rt-fMRI have been used to collect high resolution maps of motor, language, and
somatosensory areas and to allow detection and correction of motion and other artifacts during the
scan ([11],[12],[13],[14],[15],[16]). As another important application field, biofeedback attempts to
teach subjects how to modulate their neural activity through a brain-computer interface (BCI). Intu-
itively, detecting cognitive states with high accuracy and providing biofeedback rapidly are essential
for such applications, and models that can perform training and predicting online are of specific
interest and importance.

When biofeedback models are applied effectively to rt-fMRI data streams, neural feedback based
BCI can enable closed loop self-modulation of neuronal activity ([17],[18],[19]). Through operant
training and visual feedback cues, subjects have learned to modulate insular cortex activity ([20]),
navigate through mazes ([21]), communicate desired motor movements ([22],[23]), and manage
chronic pain ([24],[25]). Coupled with machine learning (ML), rt-fMRI may open up the possibility
for new experimental design and theapeutics ([18]), particularly for medication refactory conditions.
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All of these, and many other findings ([19],[26]), have led to much excitement in the neuroimaging
community. The challenges of applying ML algorithms to rt-fMRI are almost as great as the enthusi-
asm behind the research. The choice of features is ill-defined, because of both anatomical variations
among subjects and inconsistency of functional activity across time known as nonstationarity. Many
models that predict in realtime are actually trained offline because of the computational expense
involved in selecting features, model training, model evaluation, and online prediction all within
a typical TR of 2 seconds. Algorithms may be difficult to interpret because they are not tailored
to the structure (temporal by spatial) of fMRI data or the unique challenges it poses, such as non-
stationarity, temporal autocorrelations, or the spatial correlations among voxels that are known to
exist. Thus, a successful online rt-fMRI model would be resilient to nonstationarity and signal drift,
use a predetermined interpretable feature set, and harness the known autocorrelations to increase
predictive accuracy.

1.1 fMRI data challenges

fMRI data is serially autocorrelated due to the hemodynamic response function (HRF) and to noise,
which can result from electrical interference, movement, or even from cardiac or respiratory func-
tions ([27],[28],[29]). In addition, it is reasonable to assume that the cognitive states are themselves
correlated, with the immediately previous state affecting the present. Although there is strong tem-
poral covariance within fMRI data, few attempts have been made to utilize the information encoded
in their temporal patterns for prediction. SVM, linear discriminant analysis, and naı̈ve Bayes are fre-
quent choices of classification machines ([30],[31]), yet permuting the observations’ order does not
change the final models, as they make no assumptions on the covariance structure of the observations
orderings. This may be a suboptimal approach to both offline and real-time classification; by treat-
ing all states as mutually independent, current fMRI models may be omitting valuable information
that could aid in classification.

The family of Markovian models are known for their power in modeling spatial and sequential data.
They generally assume that the current state depends only on the most recent history (the previous
state) or neighborhood characteristics. They have been applied in the past to offline (but not real-
time) fMRI data analysis, both in image segmentation and in state modeling. Markov Random Field
(MRF) theory has been typically used to process and analyze fMRI data ([32],[33],[34]). Hidden
Markov Model (HMM) analyses are also employed for fMRI activation detection, including voxel-
based modeling ([35]). Woolrich, et al., used Bayesian inference including a Markov Chain Monte
Carlo (MCMC) sampling technique to extend modeling to group analysis [36]. However, all these
methods have not yet been applied to rt-fMRI analysis. We wish to harness the memory property of
these models to inform the regular machine learning models, in the anticipation that capturing the
structure contained in the serial autocorrelations among states will provide additional information
for classification.

The observed fMRI signal is known to drift both temporally and spatially due to physiological
changes, subject movements, neuronal plasticity and instrument stability problems ([36],[26],[19]).
Models trained offline yet tested online are particularly sensitive to signal drift and nonstationarity,
since the incoming data may bear little resemblance to the data they were trained to recognize. In
practice, such drifts are even more difficult to accommodate when biofeedback is used to alter the
subjects’ response during the scan, because the model changes the subjects’ response while simul-
taneously predicting it. Moreover, nonstationarity makes interpretation of features and their weights
exceedingly difficult over time, as it is nontrivial to decouple drift induced by neural feedback from
drift inherent in measurement of time-varying cognitive processes.

This issue is typically dealt with both by detrending the data and by selecting model-training win-
dows. LaConte found that in order to achieve acceptable accuracy across scans it was necessary
to both detrend the fMRI signal and linearly detrend the output of the SVM classifier. ([22]). Al-
though linear detrending is simple in binary classification, it becomes computationally infeasible
with multivariate outcomes having high-dimensional partitions between states. Online models that
use sliding windows or weighted time averages to train on a small portion of the past history and
predict incoming observations are less sensitive to nonstationarity inherent to fMRI data, but the
statistical power of these models is reduced. Training time typically requires multiple minutes, and
the time required to generate feedback typically takes many seconds ([20]), partly due to the large
number of possible features available in a three-dimensional image.
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Previously, features used for rt-fMRI models have been limited largely to GLM-based approaches
and hypothesis-driven ROI (Region of Interest) based analyses where the mean signal in one or
more ROIs is used to predict a state or condition. However, the interpretation of these features and
their arbitrary scaling can be problematic, as well as the computational time involved in evaluating
each of their potential for classification. Operator choices include: which regions to select, their
summary statistics, and how these regions should be scaled ([19]). As multiple areas can operate in
cognitive processing, the question arises as to how these individual regions should be combined and
weighted into networks. In addition, the interpretation of ROI-based methods offer little insight into
hidden cognitive representations, as the signal fluctuations within a single ROI may be the result of
the influence of multiple underlying brain networks or cognitive states. If several asynchronous and
independent networks involve the same single region, it is possible for this region to appear inactive
regardless of its underlying activity.

Unsupervised learning methods, especially Independent Component Analysis (ICA) have been used
extensively to address the problem of network activity in fMRI ([37],[38]) in the attempt to extract
spatial features that co-vary in time. The spatial features are constrained to have statistically inde-
pendent time-courses, allowing feature maps to operate on the same region with independent activi-
ties. These methods have been adapted to rt-fMRI data in a sliding-window to identify components
and time-courses associated with specific activities ([39]). DeMartino, et al., have developed an ap-
proach that brings the temporal structure of the ICs into the alignment process ([40]). Specifically,
they form an IC fingerprint whose dimensions helps to characterize the IC by temporal features. An-
derson demonstrated the creation of an IC Dictionary on a larger scale by performing bootstrapped
clustering of 21,256 ICs pooled over 279 scans taken from 51 subjects performing a video-craving
task ([41]). These feature maps were taken to be representative of the latent cognitive processes op-
erating while nicotine-addicted subjects were watching videos designed to induce cravings, forming
a sparse feature space by which to represent the different states.

1.2 Model proposal

Although machine learning methods have demonstrated impressive power to classify fMRI data,
there is still a strong need to balance the power of mathematical models with their neuroscientific
interpretability. Currently, rt-fMRI models are hindered by data drift and an overwhelming set of
possible features, limiting their ability to predict in real-time for biofeedback. Models may not be
capitalizing on all available information by essentially ignoring the existing autocorrelations in the
data. In fact, models that offer exceptional classification accuracy as a black box may provide little
benefit and little insight for understanding underlying cognitive state changes by selecting features
to optimize classification accuracy, without regard to interpretability. The adoption of multivariate
pattern analysis (MVPA) for both feature selection and data modeling has to be bounded by model
interpretability while harnessing all available information in the data.

Building on these findings, we create and evaluate a set of rt-fMRI models that collectively evaluate:
1.) The extent of nonstationarity within fMRI data, and how preprocessing steps such as demeaning
affect the ability to classify cognitive states within and across scans from the same subject in online
and offline models. We also assess feature choices (blindly-nominated ROIs vs. a priori defined IC
maps) on both classification accuracies and model interpretations, and 2.) How incorporating prior
fMRI states in the form of a Markov transition matrix can inform and update the SVM models’ class
likelihoods. Our objective is both to evaluate the effectiveness of various classification models and
to identify which systems are most responsible for discriminating during real-time classification.
Collectively, these methods ask and answer questions important to real-time classification, namely
the impact of nonstationarity on both the model learning and interpretation, and whether using a
priori information in the form of IC templates or Markov state transitions can increase our under-
standing and identification of latent cognitive processes during real-time analysis. We explore the
tradeoff between sophisticated MVPA methods and practical interpretability, and whether the black
box algorithms that perform blindly feature selection and classification are in fact superior to models
that use cognitive state-based features a priori defined.
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2 Methods

2.1 Data

The dataset consisted of 51 subjects scanned pre- and post-treatment in a smoking-cessation study.
Data were collected as the subjects viewed videos under three video conditions interspersed with
resting periods and brief auditory stimuli that was unintentionally muffled. The video cues were
passive viewing of cue-neutral videos, passive viewing of smoking provocation videos, and viewing
after being instructed verbally to resist craving. The full experimental design along with the data col-
lection procedure is presented in ([42]). The fMRI analysis followed a standard pipeline established
in our lab using FSL ([43]). Preprocessing included motion correction using MCFLIRT; nonbrain
removal using BET; slight spatial smoothing using a Gaussian kernel of FWHM 5mm; high pass
temporal filtering with σ=50.0 s. Registration to high resolution and/or standard images was carried
out using FLIRT.

2.2 Dictionary creation

Following the methods presented in ([41]), we created a dictionary of common ICs expressed as
intensity topologies in the probabilistic atlas provided in FSL. These ICs are dimensions in our
classification process. Single session ICA results from 279 scans were first aligned to a common
atlas space, projected into a lower-dimension anatomical-based atlas space by averaging within ROIs
specified by the Harvard-Oxford cortical and subcortical structural atlases ([44]), and then pooled
together. These 20,000 ICs were clustered using bootstrapped k-means clustering to obtain a set of
20 template ICs, which were then back-projected into the full voxel space. These exemplars we refer
to as the IC dictionary, a set of 20 components possibly corresponding to the underlying functional
networks present during and across the treatments and tasks. Examples appear in Figure 1.

2.3 Feature extraction

We used two sets of features and compared their effectiveness: the IC dictionary and the ROI
summaries. For the ROI summaries, each time point in a scan a volume was reduced into a
110-dimensional feature by averaging the signal within each region specified by the Harvard-
Oxford atlas ([44]). For the feature of IC-functional correlations, the correlation r2 of a func-
tional volume Vt at time t with one of 20 reference ICs is used to create a feature vector −→xt =(
r2(IC1, Vt), r2(IC2, Vt), . . . , r2(IC20, Vt)

)
The entire volume Vt is then compressed into a 20-

dimensional vector, where each element of the vector expressed the relative contribution of each
IC-Dictionary element to the subjects activity at that time point. Support for the IC-functional cor-
relation model comes from evidence that the found ICs themselves align well with functionally
identifiable brain networks such as motor control, memory and executive function ([45]).

Our objective is to learn the model g that optimally maps the observed feature vector −→xt at time t to
the set of N possible cognitive states C, or g : −→xt → C. We evaluated classifier and model drift by
determining whether demeaning the data (within each feature) aided the classification accuracy for
using ROIs and the ICs as features.

2.4 Models

We evaluated nonstationarity by investigating: 1.) the effect of demeaning within each feature set,
and 2.) the differences between the models trained within a scan (online) and the models trained
across scans (offline). The classifiers were variations on Support Vector Machines (SVM) ([46]),
which seeks to find a hyperplane that separates training data into positive and negative classes (it is
straightforward to extend this criteria to multiple classes). Markov transition matrices were added
and omitted to the online and offline models to evaluate the effect of adding the state transitions on
the overall classification accuracy ([47]).

These models were used to predict four different encodings of the stimulus, and the average ac-
curacy across encodings was used to evaluate the model strength. The original task consisted of
a sequence of visual and auditory stimuli interspersed with rest periods (the audio stimulus was
muffled unintentionally); the video stimuli were three different movies intended to create states of
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Figure 1: Representative spatial topologies of four of the 20 discovered dictionary ICs (independent
components). B) Conceptual framework: Any given cognitive state is modeled as a point in a 20
dimensional feature space defined by the dictionary ICs.

crave, crave-resist, and crave-neutral. Using the known timing ([42]), we coded the response vari-
able for the models in four different ways, giving the classifier successively more complicated states
to distinguish among. These tasks were: 1.) Video/Audio, where just the portions of video and
audio were classified. 2.) Task/Rest, where Video and Audio were coded identically as a generic
task. 3.) Video/Audio/Rest, where each condition was coded separately. 4.) Audio On/Rest/Video
Crave/Video Resist/Video Neutral, where the models had to predict membership of five states.

If we use Ct,i to denote the cognitive state i of a system C ∈ C at the time point t, the system states
will form a discrete-time Markov chain with transition matrix A if for any states {j, i, it−1, . . . , i0},
P (Ct+1 = j

∣∣Ct = i, Ct−1 = it−1, . . . , C0 = i0) = P (Ct+1 = j
∣∣Ct = i). The rows −→ai of the

transition matrix A contains the transition probabilities to all possible states j ∈ 1, . . . , N given the
previous state i. Each element ai,n ∈ −→ai gives the probability of transitioning to state n ∈ N given
the previous state i.

Combining the SVM (radial basis kernal with γ = 1
20 ) and the Markovian dependency, we applied

four models to our dataset:
Model A: SVM Online trains an online SVM model g on the data from time (1, t − 1) and tests it
on the data at time t. ForN possible states at time t, the SVM model g outputs the current likelihood
of each state ct given the previously observed data, such that −→ct = g(−→xt |−−→xt−1,−−→xt−2, . . . ,−→x0), where
−→ct =

(
p(Ct,1), p(Ct,2), . . . , p(Ct,N )

)
. This requires the model to be updated at every time point,

but the computational cost is negligible because of the low number of explanatory variables (either
20 or 110, depending on the features selected).

Model B: SVM Markov Online updates the SVM class probabilities −→ct using a Markov tran-
sition matrix. It estimates a transition matrix A at every time point given the history of the
process. The predicted class label Cj at a time point t given the current state i is decided by
Cj = maxn∈N

{
ai,n
−→ct

}
. This is a variation of a model presented by ([47]).

Model C: SVM Test trains an SVM model offline, g, and tests it online during a new scan from the
same subject, pre-treatment.

Model D: SVM Markov Test creates a model offline, g, using a training scan, and tests it online
using the testing scan. The offline model updates the SVM probabilities with the Markov transition
matrix, A, also learned from the training data.
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3 Results

There were 64 different classifiers depending on which model was selected, how the response vari-
ables were encoded, the choice of features (ROI vs IC Dictionary), and whether or not demeaning
was used. By averaging across options, we obtain with high certainty an understanding of how
changing each part affects the classification accuracy as a whole. We discovered the ROI-based
models were impacted by demeaning and training (online or offline), but IC dictionary models did
not have substantial changes in accuracy based on these changes. Including the temporal infor-
mation using a Markov transition matrix increased the predictive accuracy by roughly 23%. This
varied little regardless of the feature choice (ROI or IC) and the training choice (online or offline).
The average accuracy over all possible response encodings are shown in Figure 2, where the average
chance accuracy is 52.1%.
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Figure 2: Accuracy by Parameters, compared to Chance

For the ROI feature, demeaning increased classification accuracy for the SVM-Test Model (offline
model) by nearly 24%, but decreased the classification accuracy for SVM-Online by 31.3% aver-
aged over all conditions. However, demeaning had little impact on the predicted accuracy when the
IC feature was used. Although classification accuracy was slightly better (4%) for all online mod-
els, this difference was contingent again on whether ROIs were selected as features, and whether
demeaning was performed. This difference again varied more for the ROI feature than for the IC
feature, and was also influenced by initial feature demeaning. The online model (SVM-Online) was
superior by 33% for predicting on ROI Full features, yet the offline model (SVM Test) was superior
for predicting on ROI Demeaned features by 22%. Collectively, these results show that the decision
of training offline or online and the choice of demeaning features or not both have much more impact
when using ROIs as features than using ICs, showing that IC-features produce more stable models.
Incorporating Markov transition matrices increased the accuracy for all models.

We argue that the ICs are plausible cognitive states because known visual and spatial networks are
present. ICs have higher intensity in regions like the calcarine sulcus and cuneus (known to be
involved in vision) and ventral striatum and medial orbito-frontal gyrus (known to be involved in
craving). [41] compared results from the model free IC dictionary creation to those obtained using
the GLM and found overlap between the two results. Further, as expected, regional activity was
spread out over multiple ICs rather than clustering into one IC for vision and another for craving,
suggesting the ICs are able to separate sub-networks in a way the simple GLM analysis could not.

4 Discussion

Collectively, these results show that using IC features are less sensitive to model training options
(offline versus online) and preprocessing steps (feature demeaning versus no demeaning). These
IC dictionary models were only strengthened when incorporating the covariance structure among
states, using a Markov transition matrix.

We emphasize again that a mathematical model that allows little insight into actual neural processes
provides little value for neuroscience. The SVMs can produce importance values that represent the

6



relative contributions of various features to the overall classification accuracy, by simply permuting
elements within each feature ([48]). Although the weighting of each feature is a relatively simple
calculation, the features themselves are more difficult to interpret if ROIs are used instead of the
ICs. With 110 ROIs as possible features, the calculations and rankings become cluttered when
determining importance. Even more severe though is the inability to interpret ROIs individually. As
most cognitive states are recognized to be the contribution of multiple regions acting collectively,
and regions often are involved in multiple tasks/functional networks, discovering that a given region
is significant in classification gives little interpretability into what the underlying processes are.

The substantial improvement in classification accuracy when incorporating a Markov transition ma-
trix can be attributed to the fact that the transition matrix eliminates certain kinds of errors: in a
blocked design the transition probability between many states becomes zero. In other words, the
Markov transition matrix effectively removed unlikely state transitions. For example, when the pre-
vious state is a video cue it is almost impossible for the current state to be auditory. Intuitively,
the transition matrix acts as a high-pass filter for the SVM probability predictions, sharpening the
probability of some output classes and diminishing it for others. Further analyses may focus on the
problem of separability: can induced drift be distinguished from inherent physiologic drift? Model-
ing drift that occurs as a result of neural feedback may be useful in assessing the efficacy of neural
feedback based therapy, and plasticity that may occur as a result.

Using IC features results in much more stable, robust predictions over time. This leads to an even
deeper realization about some intrinsic properties of fMRI data: they are fluid and nonstationary; and
transforming them with respect to a reference set, in this case, the IC dictionaries, helps to ground
them. This is similar to using triangulation to measure an object; by having a grounded reference
point, the certainty in the final measurement increases. ROI boundaries typically are selected based
on anatomical or cytoarchitectonic features ([49]). As such, considerable functional inhomogeneity
can be present within a given ROI ([50]), and slight spatial perturbations in seed based analysis
can generate significant changes in connectivity ([51]). By contrast, IC spatial maps are nominated
functionally by the data themselves over larger brain areas than a single ROI, making ICs resistant
to local measurement changes that might occur due to spatial drift.

Considerable evidence supports the notion that the ICs themselves represent meaningful functional
systems in the brain. For example, there is considerable stability of discovered ICs across indi-
viduals ([52]) and, most significantly, the spatial signatures of these ICs align well with previously
reported patterns seen in conventional activation studies. A single ROI may provide “mingled” but
non-deterministic information about the cognitive states. For example, the hippocampus has impor-
tant roles in explicit memory encoding ([53],[54]), but it does not perform such tasks in isolation:
memory encoding also relies on neighboring medial temporal lobe structures and the prefrontal
cortex ([55]). Combining ROIs to create plausible networks is itself a multivariate problem, and per-
forming MVPA methods to determine importance within a model is ill-defined. Because of this, we
believe that defining the features beforehand using the IC dictionary offers a substantial advantage
not just for constructing models, but for interpreting them. The face credibility arises from the fact
that such networks do, indeed, co-occur in more complex activities (e.g., spatial working memory).
This concept is in any event much more plausible than assigning unique functions to individual brain
regions.

We are aware that the models presented here have several limitations. Our IC dictionary may be
sensitive to the choice of atlas. Although the Harvard-Oxford atlas we used is well-accepted, it is
not the only one available, and it is based upon structural instead of functional architecture. The
number of features used here (20) is also a parameter that was not investigated fully: as there were
thousands of ICs initially available, we could have constructed up to thousands of features to rep-
resent the data. The ICs we used as features were dependent upon the data from which they were
constructed. Although we used ICs from a larger set of craving-related data, there is the possibility
that the resulting ICs may be sensitive to task performance and may not provide as much utility if
the task were instead changed to, for example, a memory task. Our particular model for cognitive
states is explicitly linear. This is, of course, naı̈ve, not only because the weighting of a given IC on
a state may itself be nonlinear, but also because we would expect significantly more complicated
interactions may exist among functional networks in the brain. For example, in a multi-sensory
environment, it is well established that auditory stimuli can effect visual perception ([56]), and vice
versa. The linear SVM is poorly equipped to model such effects. Although we used a Markov tran-
sition matrix to incorporate temporal dependencies in the response, this does not explicitly capture
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the known hemodynamic response and temporal dependencies in the features but instead capitalizes
on the information in the response, or the state being observed. It is possible that modeling these
intrinsic temporal properties more accurately may remove much of the noise that exists in the fMRI
signal, thus improving classification accuracy. It is also likely that this approach is sensitive to the
experimental design used; for blocked-design, the transitions between states are clustered. With
event related designs though, the probability between states are likely to be more evenly distributed,
causing the Markov matrix to be a low-pass filter that would even out the probabilities estimated
by the SVM model. This effect may be mitigated though both because of the HRF, which leaves
a lingering effect of prior activity in current observations, and also because of the nature of cogni-
tive states and their inability to change instantaneously. Because of these and other limitations, we
present this analysis as a launching point for future work.

5 Conclusion

These results not only indicate that IC-functional correlation features have better statistical perfor-
mance than an ROI-based analysis, but also point to a path of knowledge-based feature selection.
Our IC dictionary is a lower dimensional feature space that respects the concept that the functional
architecture of the brain prominently includes interactions among isolated regions. Though not a
test of this hypothesis, they are supportive of it. Indeed, this is part of a larger community trend that
moves us somewhat further from the purely localizationist neophrenological perspective, champi-
oned originally by Franz Gall in the late nineteenth century ([57]), towards the holonomic views of
Karl Pribram who posited a largely dispersed representation of function in the neocortex ([58]).

Introducing a Markov matrix greatly increased the classification accuracy by taking advantage of
the information contained in the experimental design itself. Additional support for incorporating
Markov transitions is that cognitive state changes are unlikely to be random events. There is an
underlying structure in them with autocorrelations among subsequent observations, and harnessing
the information contained in these autocorrelations can improve classification accuracy. Because
of nonstationarity within the actual data, the features themselves along with their correlations may
change over time. The offline cross-validation error used to estimate the testing error was in fact
biased, with as much as 30% difference between the accuracy predicted and the accuracy obtained.
We believe that this bias is not caused by methodological errors, but rather by errors in the assump-
tions. SVM, along with most other machine learning models, assume that the relationships within
and among the covariates do not depend on time. Rather, it views observations as a set of high-
dimensional points embedded within a metric space. No assumptions are made on the covariance
structure among the points, which can be a particular weakness when in fact the points exhibit a
strong temporal dependency. We feel that incorporating state transitions may be an important ad-
vance in developing machine methods for real-time classification of brain states and more generally
for the treatment of nonstationary data. By incorporating the temporal dependencies explicitly into
the model, we are harnessing known structure to classify an unknown fluid outcome in real-time
imaging.

Our results show that it is overall very difficult to perform accurate classification on fMRI data, both
because of nonstationarity in the data and because of the difficulties in defining and interpreting
features. Although we present ICs as informed features here, MVPA methods in general are capable
of proposing features within the modeling process by selecting and weighting ROIs ([40],[59]).
These methods, including ours, are sensitive to such choices as the atlas to be used and how these
ROIs are to be combined. We advocate ICs as features though because their computational efficiency
makes them more applicable for real-time feedback.

The choice of features, whether defined a priori or post hoc, needs to be made with the ultimate
goal in mind: to construct models that not only classify with the maximum accuracy, but also allow
researchers to glean input into the mechanics underlying the data. Although an interesting question
to ask is always how the model performs, an even more exciting question is why it works. This
question is best answered by examining all the materials that went into constructing it: the choice
of data preprocessing steps, the very nature of the data, and the final selection of how to map the
features to the responses. When viewed this way, peering into the black box of models can be more
illuminating than observing what it produces.
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