
	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

Machine Learning Tutorial: Weka
1.) Load in and work with Features/Attributes in WEKA
2.) Test ML Classification Algorithms
3.) Load in Validation Test Set
4.) Select Features
5.) Optimize Hyperparameters

Why Use Machine Learning in Neuroimaging Analysis?

• Decoding/Brainreading (Haxby et al. 2004)
• Identify Noise Components in Data (Poldrack & Tohka 2009)
• Computer Aided Diagnosis, or classifying populations (Anderson et al. 2010)

Part I: Loading Attribute file with Feature Vector

What is WEKA? Weka is data mining software written in Java. It is a collection of machine learning
algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or called from
your own Java/Perl code. Weka contains tools for data pre-processing, classification, regression, clustering,
and association rules. Weka is open source and freely available at: http://www.cs.waikato.ac.nz/ml/weka/.

Weka only deals with “flat” files. The input file format that Weka operates on is called an attribute relation
file format (.arff) file. The external representation of an instances class is an .arff file, which consists of a
header assigning attribute variable types and data exemplars with labels.

The Header section contains the relation and attribute declarations. Attribute declarations take the form of
an ordered sequence of @attribute statements. Each attribute in the data set has its own @attribute

statement, which uniquely defines the name of that attribute and its data type.

The <datatype> can be any of the four types supported by Weka:
 numeric
 integer is treated as numeric
 real is treated as numeric
 <nominal-specification>
 string
 date [<date-format>]

Note, for most neuroimaging purposes, we are interested in either real or
numeric data file formats. However, some behavioral data may take on the form of a string.

The next part of the .arff file contains the data as a comma separated list. Each Instance consists of a
number of attributes, any of which can be nominal (= one of a predefined list of values), numeric (= a real or
integer number) or a string (= an arbitrary long list of characters, enclosed in "double quotes"). Each

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

instance is surrounded by curly braces, and the format for each entry is: <index> <space> <value> where
index is the attribute index (starting from 0).

Attribute Relation File for Weather Example:

Try opening up a sample .arff file for viewing to get an idea of how the input file is formatted.

Open: weather.arff

Then select File>>Open With and navigate to Wordpad/Textedit. This should display the .arff file format
described above. This file represents one of the simplest examples that contains a mixture of data types.

Freely Available Data Sets

In the ML community, there are a number of datasets that are used for benchmarking purposes. One of the
most popular repositories for these data sets is the UCI Repository available here:
http://www.ics.uci.edu/~mlearn/MLRepository.html

Part II: Testing Machine Learning Classifiers

Why Test Multiple Classifiers?

According to the Wolpert & MacGreedy “no free lunch” theorem, there is no single learning algorithm that
universally performs best across all domains. Most Supervised ML algorithms differ in the model g(x|θ)

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

complexity that they use to describe inputs, x, using parameters θ, (the inductive bias), the loss function
used, and/or the optimization procedure used to best fit the model parameters to the data. As such, a
number of classifiers should be tested. Letʼs try a few using the WEKA gui on a sample data set.

Launch the graphical user interface for weka by navigating to WEKA-3-6.

Then double click on the Weka Icon.

From here, select the icon for Explorer on the main Weka menu (see below).

You should now see a screen like that shown below.

From the Preprocess menu, select ʻOpen File…ʼ, and navigate to the soybean.arff file.

 Once you have selected this file, the data should be loaded in, and should look like what you see below.

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

Select the button, “Visualize All,” to view each attributeʼs distribution. Are there some attributes that are
more informative than others?

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

Now select the “Classify” from the top menu. We will now select the classifier to use on the soybean data
set. We will start by using the J48 Decision Tree algorithm, which implements the C4.5 Decision Tree, as
described originally by Quinlan (1993). You can find this algorithm by selecting classifiers>>trees>>J48.

There are various approaches to determine the performance of classifiers, however cross-validation seems
to be the most popular.	 	

In cross-validation, a number of folds n is specified. The dataset is randomly reordered and then split into n
folds of equal size. In each iteration, one fold is used for testing and the other n-1 folds are used for training
the classifier. The test results are collected and averaged over all folds. This gives the cross-validation
estimate of the accuracy. The folds can be purely random or slightly modified to create the same class
distributions in each fold as in the complete dataset. In the latter case the cross-validation is called stratified.
Leave-one-out (loo) cross-validation signifies that n is equal to the number of examples. Out of necessity,
loo cv has to be non-stratified, i.e. the class distributions in the test set are not related to those in the
training data. Therefore loo cv tends to give less reliable results. However it is still quite useful in dealing
with small datasets since it utilizes the greatest amount of training data.

Here, we will start by using the default, 10-fold cross validation, for our accuracy assesement.

Now click Start.

Notice how the Weka bird paces back and forth while you classify (yay!).

The output should look like what you see below:

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

You should see the confusion matrix. Now scroll upwards to view the % of correctly classified instances.

Now try out a different classifier, Naïve Bayes.

How does Naïve Bayes compare to the J48 Tree?

How about Support Vector Machine? (hint: its located under
functions, and is called SMO)

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

Part III: Loading Test/Validation Set – Example Monk1 problem

The dangers of ʻcircular logicʼ have been discussed in detail in the
neuroimaging literature (see Kriegeskorte. Circular analysis in
systems neuroscience: the dangers of double dipping. Nat
Neurosci. 2009). In order to avoid this pitfall, one should set aside
a test set for model validation.

Lets try this using the classic Monk-1 dataset (Thrun et al. 1991),
available on the UCI database repository
(http://archive.ics.uci.edu/ml/machine-learning-databases/monks-
problems/monks.names). The Monk dataset was the first one used in an international competition applying
ML algoriths to the same dataset.

Loading the monk1_train.arff using the preprocess tab at the top. Next click on classify, and select ʻsupplied
test set.ʼ Navigate to the file called monk1_test.arff. Click close. Try using AdaBoost to classify this data
set (located under the ʻmetaʼ menu tab).

Part IV: Feature Selection Step

Although feature selection may be considered an optional step depending on the data set one is working
with and the model parameters used, it can often be useful when there are features that might be highly
correlated. Misclassification rates generally decline at first as more features are considered. However a
large number of ʻnoiseʼ features, or a number of redundant features may cause the classifier to decline in
performance, depending on the algorithm and hyperparameters used.

With the Monk-1 data set, Features 1 and 2 are highly correlated. Try going back to the ʻpreprocessʼ
screen, and select the second feature for removal.

Using AdaBoost, try classifying the data set again. (Note: you will need to use the validation set called
monk1_test_minus2.arff).

Did the classifier perform better?

There are a number of approaches to feature subset selection. Forward selection begins with an empty set
of features; whereas backward elimination refers to a search that begins at the full set of features. Each of
these methods are generally
performed iteratively.

Part V: Optimize
Hyperparameters

Why do this step?

One example that illustrates why

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

this is important is shown on the right from the Alypaydin (2004) textbook. When too many
neighbors are used in K-NN, the algorithm begins to overfit, and wonʼt generalize well to incoming
data sets.

“To validate the generalization ability of a classifier with hyperparameters one has to perform a nested
cross-validation. On each training set of the outer cross-validation, an inner cross-validation is performed for
different values of the hyperparameters. The one with minimum (inner) cross-validation error is selected and
evaluated on the test set of the outer cross-validation.” – Muller et a. (2004)

Try adjusting some classifier parameters
in WEKA. First right click on the Classifier
bar. This should bring you to a window
with all of the options for changing
classifier hyperparameters. For a
description of each one, click ʻMoreʼ. This
screen should also list the reference for
the original paper that the classifier was
based on.

Ok! Now you should be somewhat familiar
with Weka. To run it recursively, you
might want to try calling Weka via the
command line using Perl or Java scripts.

Some Useful References

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview.
NeuroImage, 45(1 Suppl), S199-209. doi: 10.1016/j.neuroimage.2008.11.007.

Anderson, A., Dinov, I. D., Sherin, J. E., Quintana, J., Yuille, A. L., & Cohen, M. S. (2009). Classification of
spatially unaligned fMRI scans. NeuroImage. doi: 10.1016/j.neuroimage.2009.08.036

Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading": detecting
and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2 Pt 1), 261-270

Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive
Sciences, 10(2), 59-63. doi: 10.1016/j.tics.2005.12.004.

Poldrack, R. A., Halchenko, YO, Hanson, SJ. (2009) Decodeing the large-scale structure of brain fucntion
by classifying mental States across individuals. Psychological Science. Nov 20(11)1364-72.

Tohka, J., Foerde, K., Aron, A. R., Tom, S. M., Toga, A. W., & Poldrack, R. A. (2008). Automatic
independent component labeling for artifact removal in fMRI. NeuroImage, 39(3), 1227-1245. doi:
10.1016/j.neuroimage.2007.10.013.

	 Created	 by	 Pamela	 Douglas,	 UCLA	 NITP	 Summer	 Course	 2011	

LaConte, S., Strother, S., Cherkassky, V., Anderson, J., & Hu, X. (2005). Support vector machines for
temporal classification of block design fMRI data. NeuroImage, 26(2), 317-329. doi:
10.1016/j.neuroimage.2005.01.048

Feature Subset Selection

Kohavi and John. “Wrappers for Feature Subset Selection,” Artificial Intelligence 97(1997): 273-324.

D.W. Aha, “Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms.” Infernat.
J. Man-Machine Studies 36 (1992) 267-287.

Liu, H. Li, J. and Wong, L. “A comparative study on feature selection and classification methods using gene
expression profiles and proteomic pattern.” Genomic Informatics, 13, 51-60, 2002

Dash, M. and Liu, H. “Feature selection for classification.” International Journal of Intelligent Data Analysis,
1(3), 1997

Nested Cross Validation in fMRI and BCI

Douglas, PK, Harris, S. Yuille, A, Cohen, MS “Performance Comparison of Machine Learning Algorithms
and Number of Independent Components Used in fMRI Decoding of Belief vs. Disbelief” Neuroimage 2010

Muller et al. “Machine Learning Techniques for Brain Computer Interfaces.” Biomedical Technologies,
2004.

