
Part 1 – Matlab

What is Matlab?
Matlab is a program that performs various numerical operations. Like a big calculator.
Computer languages are generally divided into low-level languages, that interact with the
specific hardware directly and need to be both written and compiled for the specific
setting you are using. This is very powerful, because it allows you to use the resources of
your machine in whatever way you choose. High-level languages, on the other hand, can
be transferred from machine to machine (and, in some cases, from operating system to
operating system), but often will need to be compiled for a specific setting. Matlab
functions as a scripting language. Scripting languages are high-level computer languages.
However, above and beyond the portable nature of most high-level languages, a system-
specific interpreter interprets them online, as they run. Therefore, you will not need to
compile the programs you write on Matlab. Scripting languages are relatively easy to
learn. However, they do not retain the same level of flexibility as low-level languages.
Moreover, because they need to be interpreted as they run, they are often slower than the
equivalent program written in a compiled high-level language.

Starting to work with Matlab:
You will need a computer running Matlab. Matlab runs on Macs and PCs running
Windows or Unix The student version of Matlab doesn’t cost that much ($95 at TSW)
and can be used for everything we will be doing here, but notice that it can’t do
everything that you can do with the standard version of Matlab.

Start Matlab. A window will appear that’s divided into a number of sub-windows. The
“command window” is the one which has a little prompt ‘>>’. The prompt is your
interface with Matlab, for now. When you type things at the prompt and press Enter, your
commands are processed by Matlab.

Type at the prompt:

>>str1=’I have no clue what I am doing’
You just told the computer to create a
list of letters ’I have no idea what I’m
doing’ and to name that list of letters
str1. str1 is a variable - The single
quotes tell the computer that str1 is a list
of letters (not numbers, more on that
later). Any list of letters is called a
string. Now type:

>>who
This command asks your computer to
give you a list of all the variables you
have. At the moment the only variable
you have is str1.

Text that looks like this is stuff
that is happening in the command
window. Either stuff you are typing
in at the prompt, or stuff that the
command window is spitting back out.

Text that looks like this is me telling you what’s happening in Matlab
for a particular command.

Text that looks like this is me giving you a general
overview.

Typing the name of a variable asks your computer to tell you what is contained within that variable.
>>str1
The computer should show you what’s in str1

str1 =

I have no clue what I am doing

Using disp also displays what a variable is, but only shows the contents, instead of repeating the name of the variable
>>disp(str1)
So all the computer does is display the contents of the variable as follows:
I have no clue what I am doing

>>str2=’Is it all going to be boring?’;
>>str2=’Is it all going to be boring?’
The first time you typed this you added a semi-colon at the end. The second time you didn’t. The semi-colon tells the
computer whether or not you want it to display the output of each command. This will be useful later when you write
scripts. When you debug your programs, sometimes you want the result of a line to be output to the command window,
as a sanity check. You can control that by adding or removing semi-colons.

>>who
Now you have both str1 and str2

>>str1=’I still have no clue what I am doing’
Now you are re-defining str1 by making it represent a slightly different list of letters

>>str1
See - the list of letters contained within str1 has changed

>>str1(3)
You’ve asked the computer to display the third letter in str1. This is called indexing or subscripting. 3 is an index (or
subscript) into the third character in str1. Now try:

>>str1(6)
You can see from this that the computer is counting spaces

>>mixstr=str1;
Now you’ve created a new variable called mixstr. You’ve told the computer to make mixstr the same as str1

>>mixstr
See - they are exactly the same

>>mixstr(3)=str1(1);
Now you are telling the computer to make the 3rd letter in mixstr the same as the 1st letter in str1

>>mixstr(1)=str1(3);
Now make the 1st letter in mixstr the same as the 3rd letter in str1

>>mixstr
You should now have:
‘s Itill have no clue what I am doing’

You can also create lists of numbers. These are called arrays or vectors. Here’s four different ways of creating a vector
list that goes from 2 to 9 in steps of 1. A variable is a generic term that can be used to describe a character (a single
letter), a string (a string of characters), a double (a single number, more on that later), a vector, or a matrix (a two or
more dimensional set of numbers) and other types of data structures.

>>array1=[2 3 4 5 6 7 8 9]
>>array1=linspace(2, 9, 8)
Here you are saying you want a list of 8 numbers that are evenly spaced between 2 and 9. You can imagine that this
command would be useful if you had collected 8 pieces of data evenly spaced between two and 9 seconds.

>>array1=2:1:9
Here you are saying that you want a list of numbers that goes from 2 to 9 with a step-size between each number of 1.
You can imagine that this command would be useful if you collected data that went from 2 seconds, to 9 seconds, and
had collected data every second.

>>array1=2:9
Matlab assumes a default step-size of 1, so you can simply skip it for this particular way of creating vectors.

You can also index vectors. 2 indexes the second integer in array1
>>array1(2)

You can also index more than one number in an array or string.
>>array1(2:4)

>>disp(array1)

disp can also be used to display numbers

Matrices and Calculations

The real power of Matlab comes from using matrix computations (Matlab actually stands
for ‘Matrix Lab’!). As mentioned earlier, you can have lists of numbers as well as of
letters. These list of numbers can be either one-dimensional (vectors, or arrays), or n -
dimensional (for n>1; matrices). Let’s give this a shot:

>>mat1=[1 54 3; 2 1 5; 7 9 0; 0 1 0]
>>mat2=[1 54 3
 2 1 5
 7 9 0
 0 1 0]
Take a look at mat1 and mat2. As you can see there is more than one way of entering a matrix. mat1 and mat2
were entered differently, but both have 4 rows and 3 columns. When entering matrices a semi-colon is the equivalent of
a new line. You can find the size of matrices using the command “size.
>>size(mat1)
For a two dimensional matrix the first value in size is the number of rows. The second value of size is the
number of columns.

Now try:
>>vect1=[1 2 4 6 3]
>>vect2=vect1’
Vectors can be tall instead of long, ‘ (the little symbol below the double quote on your keyboard) is a transpose, and
allows you to swap rows and columns.
Remember there is also the command whos, which will tell you the size of all your variables.
Use whos to look at the size of mat1, mat2, vect1 and vect2.
>>whos

What does mat1’ look like?
You can perform various calculations on matrices and arrays.

You can add a single number (also called a scalar) to a vector
>>vect1+3
You can subtract
>> vect2-3
You can add a vector onto itself
>>vect1+vect1
You can also add two vectors as long as they are the same size. You can’t add vect1 and vect2 together since they are
different sizes.
>>vect1+vect2
??? Error using ==> plus
Matrix dimensions must agree.
The reason you got an error is that you can’t add something with 1 row and 4 columns to something else that has 4
rows and 1 columns.
>>vect3=[2 4 8 12 6]
>>vect1+vect3
These two vectors are the same size, so you can add them together.

Matrix multiplication and division
When you want to add two vectors or matrices to each other you need to know that there are two sorts of
multiplication and two sorts of division. The simple kind of multiplication and division is called array
multiplication (also known as scalar multiplication). If you are multiplying/dividing a vector/matrix by a
single number, you can do that as you did before:

>>vect1*3
>>mat1*0.5
>>vect1/2

However, if you are multiplying a vector/matrix by another vector matrix, you need to tell matlab what kind of
multiplication to do (as you will see below, there is more than one way to multiply matrices). Scalar multiplication will
proceed element by element: each element in the first vector is multiplied by the corresponding element in the second
vector. You do this using the symbols .* and ./
Note that the vectors must be the same shape and size:

>>vect1.*vect3
>>vect1./vect3
>>vect3./vect1

Watch out for the transpose in the next 2 examples:

>>vect1.*vect2’
>>vect1.*vect3’
??? Error using ==> times
Matrix dimensions must agree.

You will get this error a lot. What an error like this means is that the two vectors or matrices that you are trying to
perform an operation on (such as multiplication) aren’t the right size or shape to do what you are doing. Lots of
operations are fussy about making sure the sizes of the vectors or matrices are consistent. So when you get this error the
first thing you should do is check the size of all the variables that you are tying to manipulate, and try to work out
whether they might be different sizes. Often it’s the case that simply transposing one of the variables is all you need to
do. This is an important thing to understand, so don’t rush through the examples above. Make sure you understand
what’s going on.

>> mat1./vect1
??? Error using ==> rdivide
Matrix dimensions must agree.
This is not going to happen for you, regardless of how you transpose mat1 and vect1. vect1 and mat1 will never be the
same size, no matter what you do.
So, with point-wise multiplication and division (which is what you will be doing most of the time) you can:
1) multiply or divide a matrix or vector by a single number (Notice that in this case either * or .* will work)
2) multiply or divide a matrix or vector by a matrix/vector that is the same size (make sure you use .*).
It’s best to get into the habit of using .* all the time, unless you are specifically using matrix multiplication (which you
will only use rarely)

The second kind of multiplication and division is matrix multiplication and matrix
division. In general matrix multiplication and division occurs through the following
formula:

For the m-by-n matrix A and the n-by-p matrix B, the m-by-p matrix of multiplying the
both will be defined by :

(A ⋅ B)i,j = Sum r=1…n {Ai,r ⋅ Br,i}

where i goes from 1 to m and j goes from 1 to p. Notice that you can use this in order to
multiply any two matrices for which the inner dimensions agree, so a 1-by-n matrix can
multiply an n-by-n matrix (how large will this product be?), but an n-by-n matrix cannot
multiply a 1-by-n matrix. Conclusion – matrix multiplication is not commutative – so be
careful!

This produces two general types of matrix multiplication.

Outer product:

>>B = [1; 2; 3; 4; 5]
B =
 1
 2
 3
 4
 5

>>C = [2 3 4 3 2]
C =
 2 3 4 3 2

>> whos
 Name Size Bytes Class

 B 5x1 40 double array
 C 1x5 40 double array

The first vector is tall and thin, and the second vector is short and fat. Calculating the outer product of the two vectors:

>>B*C

ans =

2 3 4 3 2
 4 6 8 6 4
 6 9 12 9 6
 8 12 16 12 8
 10 15 20 15 10

If we transpose both B and C and reverse the multiplication order, then the number of rows in C’ again matches the
number of columns in B’, and we can calculate another outer product, which is in fact the transpose of the previous
outer product:

> C'*B'

ans =

 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20
 3 6 9 12 15
 2 4 6 8 10

Inner product:

Here the first vector is short & fat, and the second vector is tall & thin.

>>C*B

With inner products you can again transpose both vectors and swap the order of the multiplication. This time you get
the same answer – 42.

Creating Programs

By now you should be getting a little irritated with having to type in every command one
at a time. We are therefore going to create a program – a program is simply a document
containing a sequence of commands.
In Matlab programs are written in documents called m-files. So now we are going to put
the commands you just did in a m-file.

Make sure the command window is at the front. Now go to the menu bar and choose
File->New->M-file.
You’ll get a blank document in a new editor window in which you can write your
program.
Let’s look at a program that uses some of the things we’ve learned so far:

Green is comments
Purple is text that is part of a string
Blue is commands that start and end loops

You’ll notice in the code below that some of the lines are rather long. When you are writing code and a line is longer
than your page you can break it using three dots : ‘... ‘ . Without those three dots Matlab will treat each part of the
line as a separate command and give you an error message.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

% Calculations.m
%
% Example program that carries out a series of
% calculations on two numbers and two matrices
%
% written by IF and GMB 4/2005
%
% modified by ASR 7/2007: added matrix operations

clear;
n1=input('choose the first number ... ');
n2=input('choose the second number ... ');

% spit responses out onto the command line
disp(['first number is ', num2str(n1)])
disp(['second number is ', num2str(n2)])
disp([num2str(n1),'+', num2str(n2), ...
 '=', num2str(n1+n2)]);
disp([num2str(n1), '-', num2str(n2), ...
'=', num2str(n1-n2)]);
disp([num2str(n1), '*', num2str(n2), ...
 '=', num2str(n1.*n2)]);
disp([num2str(n1), '/', num2str(n2), ...
 '=', num2str(n1./n2)]);
if (round(n1)==n1)
 disp(['n1 is an integer, n2 rounded = ', ...
 num2str(round(n2))]);
end
if (round(n2)==n2)
 disp(['n2 is an integer, n1 rounded = ', ...
 num2str(round(n1))]);
end;
disp([num2str(n1), ' to the power of ', ...
 num2str(n2), ' is ' ,num2str(n1.^n2)]);
disp(['the smallest number of ',num2str(n1), ...
 ' and ',num2str(n2), ' is ', num2str(min(n1, n2))]);
if n1>0 & n2>0
 disp('Both n1 and n2 are greater than zero');
end

A = [0:n1:n1*10 ; 0:n2:n2*10].*n1;
B = ([0:n2:n2*10 ; 0:n1:n1*10]./n2)';

disp('The matrix A is:');
disp(A);
disp('The matrix B is:');
disp(B);

disp ('A * B = ');
disp(A*B);
disp('B * A =');
disp(B*A);

54
55
56
57

disp ('A.*n1 = ')
disp(A.*n1);
disp('B./n2 = ')
disp(B./n1);

Lines 1-8: Every program should begin with a few lines of documentation. This is called a header. Good headers
contain the following information:
1) The name of the program
2) A description of what it does
3) Who wrote it, and when
4) If you are changing an existing program, add a comment about that. The time you did it and what you changed

You can run Calculations.m in two ways. One is to type the name of the program into the command window:
>Calculations
Alternatively you can go to the menu bar and choose Debug-Run (can also be invoked by pressing F5).

Lines 11-12. input prints a string onto the command window and waits for a response. The expected response needs
by default to be a number. If you try running the program and type a letter in (a character) rather than a number – you
will get an error:

??? Error using ==> input
Undefined function or variable 'r'.

]It’s possible to get input to accept characters and strings instead of numbers by explicitly telling it that the input won’t
be a number. Try this at the command window:
>> yourname=input('What is your name? ', 's')
Here the 's' tells input that the input will be a string instead of a number.

Lines 14-23. num2str converts the number n1 into a string. So:
['first number is ', num2str(n1)]
is one long string, which is then displayed by disp.

Line 25. The == checks to see if round(n1) is the same number as n1. Try
>3==3
This will give you a 1 since it is true
>3==3.4
This will give you a 0 because it is untrue.
It’s important to remember the difference between == and =,
The single = tells Matlab to make the variable x be 3.
>x=3

x =

 3

The double == asks Matlab to check whether or not x is equal to 3, and returns and answer of 1 if x does equal 3 and
an answer of 0 otherwise.
>x=3.4;
>x==3
ans =

 0

Remember how we explained that numbers could either be integers (e.g. 3) or be doubles (3.12). On Line 22 we check
to see whether n1 and n2 are round numbers by seeing if the rounded version of the number is the same as the number
itself. If this is confusing try:

>round(3.15)
>round(3)
>round(3.14)==3
>round(3.14)==4

Remember that the way == works is that you get an answer of 1 if the numbers on either side of the == are the same,
and a 0 otherwise.
if loops work in the following way: The if statement checks the condition that follows the if. For this if statement
the condition is (round(n1)==n1). If the output of that condition is a 0 (the condition is false) then the statement
between the if and the end (line 23-24) is not executed. If the output of the condition is anything but 0 (the
condition is true), then the statement after the if is executed. Traditionally a true condition is represented by a 1, but
in Matlab an if loop will be executed unless the condition following the if results in a 0.
Line 37 The & operator is used when you only want to carry out a loop only when more than one condition are both
true. & checks to see if both the statement before and after the & are true. I.e. Condition 1 & Condition 2
gives you a 1 if both conditions are true, and gives you a 0 otherwise. Try the following:
> 3>0 & 2>0
> 3>0 & -1>0
> -1>0 & 3>0

Lines 41- 56 Demonstrate the use of matrices and calculations done on matrices. Notice that in order for the
multiplication to work, one of the matrices needs to be transposed, so that the inner dimensions of the matrices match in
both multiplications (outer and inner).

Now we need to save the file. Make a folder called “PTBTutorial” somewhere. Create a
subfolder called “Misc”. Don’t put these folders inside the Matlab application folder or
you will lose everything if you reinstall Matlab.

Save the file as Calculations.m (the same as the header) in the “Misc” folder.

Now go back to the command window and type

>>help Calculations
You will almost certainly get an error message:

Calculations.m not found.

When the computer says that a file is “not found” that means the computer can’t find an
m-file that has that particular name. The reason the computer can’t find the file even
though you saved it in the folder ‘Misc’ is because the computer is only allowed to look
for files in certain places.

One place that the computer always looks for files is the current directory or working
directory. In fact this is the first place that the computer looks. When Matlab opens it
automatically links to a particular folder (the default setting is made by Matlab). If you
don’t tell it otherwise it will save files to that folder. You can see what folder Matlab
thinks is the current directory using the print working directory command:
>>pwd

The other places that the computer can find files are in folders that are in Matlab’s search
path. This path is a simply a list of folders that the computer is allowed to look in

whenever it is trying to find a file. Again Matlab comes with a default set of paths. You
can get a list of the current folders in the path very easily:
>>path

To tell the computer where to look, you set the path …

Setting the path via the menu bar
Make sure the command window is at the front, and go to:
 File->Set Path in the menu bar. A pop-up window will appear
Choose “Add With Subfolders”, choose the “Misc” folder, and click
OK. Then choose Save and Close.

Now type
>> help Calculations
You should see the information entered in the header.

The command help tells the computer to display the header you wrote. That’s why you always need to write headers
for every m-file that describe clearly what the program does and how to use it.

An important thing to remember about setting your path is that if there are two files with
the same name, and your path allows the computer to see both of them you won’t get a
warning, the computer will just use the first one it finds!
You can find out which file the computer is using by typing
>>which Calculations
Matlab should spit out something like the following depending on where you put Calculations.m on your computer.

/Users/ariel/PTBTutorial/Misc/Calculations.m

You only have one version of Calculations. If you had multiple versions, Matlab would print out the path for each
version that was within the path. The one at the top of the list is the version that Matlab will use by default at that
current moment.

But be careful – which version that is used depends on what directory is the current
working directory for Matlab. If the current directory changes it is possible that the
version of MixStrings that is used will also change. This can lead to some really weird
bugs (a bug is any time a program doesn’t do what you want it to do and you have no
idea why). One really confusing thing that can happen if more than one file of the same
name is in the path is that you can make changes to a file, but the changes don’t affect
what the computer does. What’s happening is that the computer is not actually using the
file that you are changing – it is using a different file of the same name somewhere else in
the path.

So you need to be careful about two things:
1) Don’t be sloppy about having multiple m-files with the same name sitting in different
directories
2) Be careful about your path.
Make sure that old directories with out-of-date files in them aren’t still in your path. One
good technique for path management is not to simply put folders in your default path so

they are permanently in the Matlab path. Instead, when you write a program you simply
add the paths you will need for that program at the beginning of the program using
Matlab commands (instead of the Menu bar). This technique lets you have different paths
depending on which programs you are running, instead of having one mega-path. Using
this technique to manage your path minimizes the probability of having out-of-date
folders in your path.

Changing the path within Matlab
Play with the following commands and use them to move to your MatlabClass/Misc directory.
>>pwd
This tells you the current directory
>>cd ..
Moves up one directory
>>ls
Lists the files in that directory. You can move to any of the files listed in that directory:
>>cd Misc
Moves to folder Misc (provided you are in a folder that contained the subfolder Misc). You should be able use these
commands to navigate to your Misc folder. Then you can add Misc to your path as follows:
>>addpath(pwd)
What you are doing here is telling the computer to add the folder you are currently in (pwd) to the path.

Remember how in my computer I used which to find that Calculationss lived in the folder
/Users/PTBTutorial/Misc
Well I can now use that information at the beginning of Calculations to make sure that the folder Misc is in my path by
just adding the line
addpath(‘/Users/ariel/PTBTutorial/Misc’) at the beginning of the program

Help – your new bestest of friends

One of the advantages of working with Matlab is that there exist built-in functions to do
most of the numerical operations you can think of (and a whole lot of numerical
operations you have never thought of). How would you know if the operation you want to
do is already built-in? One way to do this is through the exstensive help module. Open
the help module and type in the search bar your favorite mathematical operation. For
example, try typing in ‘cross-correlation’. You will get several pages of documentation,
among them is a help page for the function ‘xcorr’, that actually computes the cross-
correlation function of two vectors.
If you know the name of the built-in script you want to get help about, another way to
access the documentation on this script is to type:

>>help xcorr

This types the header of the script to the command window. If the programmer writing
this script has done a good job, this will provide you with enough information to run the
script. Don’t be shy to use help – you will probably use this feature of Matlab more often
than any other feature of the program.

Functions

A function is a self-contained block of code that performs a coherent task of some kind.
When you send a task to a function, you give the function all the variables it needs to
know, and it returns the variables that you want. The calculations within the function are
hidden.

Why Functions?
There are three main reasons for writing functions.
1) To make your code readable – hiding pieces of code in functions makes the overall
structure of your code clearer and easier to read.
2) To shorten your code – if you do the same thing repeatedly putting it in a function
allows you to call the function repeatedly instead of repeating the same lines of code
again and again.
3) To give you a library of routines. You will do many things again, and again in your
career writing code. Writing a function to do it means that the next time you need to do
that particular manipulation you don’t need to rewrite that piece of code.
 4) To save memory. When we create a function, we are only interested in the output of
that function. All the other variables that are created within a function are only there in
order to help us get to that answer. The memory taken by these variables will be freed
once the function has terminated.

Whenever you write code, think about whether you will ever need that particular piece of
code again – if you will, make it a function. (Even if it’s just two lines – it will be easier
finding a function then rummaging through old code for those precious two lines.)

Here is a very simple function.

1
2
3
4
5
6
7
8

function output=SimpleFunction(input)
%
% a very simple function
%
% written by if 4/2007

output=10*input;

The first line of your m-file defines this piece of code as a function. The terminology is
that any variables you want to return from the function come before the equals sign.
Variables you want to send into your function go inside the brackets after the function
name.

You can send more than one variable in, and get more than one variable out.

1
2

function [output1, output2]=SimpleFunction2(input1, input2)
%

3
4
5
6
7

% Another very simple function
%
% written by if 4/2007

output1=input1.*input2;
output2=input1./input2;

Actually you have been using functions already, many of the commands you have been
using already are functions – e.g. round – you give the command round a number as
input and it returns the closest integer as the output.

We will see extensive use of functions next time, when we start programming an
experiment.

Plotting

For completeness’ sake, I add this section on plotting. One of the uses of matlab is
creating visualizations of data. This can be done through a rather sophisticated system of
plotting functions. We will use some of these when we turn to analysis of data from
psychophysical experiments. You can get more information about plotting by using
Matlab’s interactive help.

Let’s start by plotting a linear function:

>>figure(1)
>>x=0:5:100;
>>y=3*x+4;
>>plot(x, y)

The figure window has various properties. You can access them with the command:

>>get(gcf)

gcf stands for get current figure. It basically provides a handle through which we can access the
properties of the last figure that was referred to. It will tell you a lot about the current properties of the figure.

You can find out about the possible options for a figure using
>>set(gcf)

You can also change various figure properties using the set command
>>set(gcf, 'Color', [1 1 .5])
>>set(gcf, 'Position', [100 100 300 300])
>>set(gcf, 'Pointer', 'ibeam')
>>set(gcf, 'PaperOrientation' , 'landscape');
>>set(gcf, 'Name', 'My Data Figure');

If you have more than one figure and you want to be able to access and change properties on more than the
most recent figure. In that case you need to create a handle to each figure.

close all
fh1=figure(1);
fh2=figure(2);
set(fh1, 'Color', [1 1 .5])
set(fh2, 'Color', [.5 1 1])

You can also put figure handles into an array
>>close all
>>clist=[1 1 .5; .5 1 1]
>>for i=1:2; fh(i)=figure(i); set(fh(i), 'Color', clist(i, :)); end

Subplots

You might want the figure to contain subplots. In Matlab each subplot is called an axis.
If you don’t define the number of subplots then Matlab assumes you have a single axis
(the whole figure).

>close all
>figure(1)
>subplot(2,2,1)

Like figures, subplots have various properties. You access them very similarly to the way that you access
figure properties

>get(gca)

Here gca stands for get current axis. It provides a handle to the last axis that Matlab created. It will tell
you a lot about the current properties of the axis. Note that an axis has different properties from those of a
figure. Once again you can look at the various options you have for axis properties using

Here’s a table of the most useful properties of axes that you might want to change. But you can find and
modify lots of other properties by using get(gca) and set(gca)

>>help plot is also a really good way of getting information about plotting

* These axis properties can also be set as part of plot properties.

** These axis properties are defined using a slightly different command structure

Axis property How to set the property Comments
Color set(gca, 'Color', [1 1 .7]) Sets the color inside the subplot. Takes

as input a single color.

*ColorOrder
set(gca, 'ColorOrder',
gray(8))

Defines the order of colors used in plot
commands. Takes a colormap as input

FontName set(gca, 'FontName', 'Times') Defines the font, uses normal computer
fonts, e.g. ‘Helvetica’ , or ‘Arial’

FontSize set(gca, 'FontSize', 12) Defines font size
FontWeight set(gca, 'FontWeight', 'bold') Thickness of the font, can take the

properties of [light | normal | demi | bold
]

*LineStyleOrder
set(gca, 'LineStyleOrder', …
{'-'; '--'; '-'})

Defines the order of line styles used in
plotting the figures. Takes a structure
defining the line styles

LineWidth set(gca, 'LineWidth', 2) Sets the line width of the axis lines

** title
title('my subplot ') or Title

title(gca, 'My Title')

** xlabel /
ylabel

xlabel('my X axis') /
ylabel('my Y axis')
or
xlabel(gca, 'My x label')

Labels x and y axis

** XLim / YLim
or
axis

set(gca, 'XLim', [0 3])
axis([0 3 0 1])

Sets the X or Y limits of the plot. Two
ways of setting the axes

XTick / YTick set(gca, 'XTick', 0:1.5:3) Decides where you want the tick values,
takes as input a vector of where you
want the tick values

XTickLabel /
YTickLabel

set(gca,'XTickLabel',…
[5 35 100])
set(gca,'XTickLabel', …
{'One';'Two';'Three'})

Decides what you want to label the ticks
as instead of using the numbers in
XTick. Can either take a vector, or a
structure containing the strings you want
to use as axis labels

Other useful commands are:

>>axis equal
sets the axis so tick marks are equally spaced on x and y axes

>>axis square
makes the current axis square

>>axis off
turns off all axis labeling, tick marks etc.

Like figures, if you have more than one subplot and you want to be able to access and change properties on
more than the most recent subplot, you need to create a handle to each subplot, and use that to change the
properties

>>close all
>>fh=figure(1)
>>set(fh, 'Color', [1 .6 1])
>>sp1=subplot(1, 2, 1);
>>sp2=subplot(1, 2, 2)
>>set(sp1, 'Color', [1 1 .6]);
>>set(sp2, 'Color', [.6 1 1]);

Line plots

Once again, plots have properties that you can alter. But for plots there is no handy command like gcf and
gca that allow you to reference the most recent plot (it’s possible, but tricky). So you should work on defining
handles from the beginning if you are planning to change plot properties. The kinds of properties you can
change actually depend on the kind of plot you are doing.

Here are some of the properties you may often want to change for a line
plot (like the linear function we plotted before)

Line plot
property

How to set the property Comments

Color set(ph, 'Color', [1 0 0]) or
set(ph, 'Color', 'r')

Sets the color of the plot line. Color
can either define red, green or blue
guns or you can use a shorthand for
some specific colors. Options include:
‘b’, ‘g’, ‘r’, ‘c’, ‘m’, ‘y’, k’ {blue, green,

red, cyan, magenta, yellow black}
LineStyle set(ph, 'LineStyle’, '--') Sets the style of the line. Options

include:
[{-} | -- | : | -. | none]
(solid line, dashed line, dotted line,
dash-dot line, no line)

LineWidth set(ph, 'LineWidth', 1) The thickness of the line
Marker set(ph, 'Marker', 'v') What the plot marker is. Options

include: [+ | o | * | . | x | square |
diamond | v | ^ | > | < | pentagram |
hexagram | {none}]
The v< >^ symbols represent
triangles of various orientations

MarkerSize set(ph, 'MarkerSize', 5) The size of the markers
MarkerEdgeColor set(ph,'MarkerEdgeColor'

, [0 0 1])
The color of the marker edging

MarkerFaceColor set(ph, 'MarkerFaceColor', [0 0
1])

The color of marker fill

Legend and Text
In much the same way as we have manipulated figures, axes and plots using handles, legends and texts
can also be manipulated:

text takes as input the x and y position of the string you want to use, and the string. These text objects
can also be assigned handles and you can change their properties. To see what those properties can be,
you simply use get or set.

>>th1 = text (10,20, 'This is a piece of text')
>>set(th1)
>>get(th1)

legend takes in a list of the plot handles for which you want to create the legend, and a cell array
containing the strings that will be the legend labels.
Again, you can use get and set to look at properties of the legend. You can change things like the
location or the font size or type.

>>lh=legend(ph1, {'x'})
>>set(lh, 'Location','West', 'FontName', 'Arial', 'FontSize',
10)

1
2
3
4
5
6
7
8
9
10
11
12
13

% plotExample.m
%
% Demonstrates the use of plotting commands and of %
annotation of plots and figures
%
% ASR made it 7/2007, using code from IF

close all
x=0:2:100;
y1=2*x;
y2=3*x;
y3=3.5*x;

14
15
16
17
18
19
20
21
22
23
24
25
26
27

ph1=plot(x,y1, 'r-');
hold on
ph2=plot(x,y2,'g--');
ph3=plot(x,y3, 'b:');
title('fake data')
xlabel('my x data');
xlabel('my y data');
th1=text(x(13), y1(13), 'red line');
th2=text(x(15), y2(15), 'green line');
th3=text(x(17), y3(17), 'blue line');
set(th1,'Color', 'r')
set(th2,'Color', 'g')
set(th3,'Color', 'b')
lh=legend([ph1 ph2 ph3], {'x2'; 'x3'; 'x3.5'})

Line 15: ‘hold on’ tells matlab not to remove the old plots from this figure, when new plots are added. This can be
reversed using ‘hold off’

More plotting in 2D

As I mentioned before, Matlab plotting is rather sophisticated and enables you to create
rather complicated plots. We continue with some more plotting commands in 2-
dimensional plots

Errorbar plots
This type of plot presents errorbars.

close all
x=0:8:100;
y=3*x+4;
err=sqrt(y/4);
ph=errorbar(x, y, err)

In order to achieve maximal flexibility in determining the properties of the error bars
separately from the properties of the plotting of the data, plot each of these separately
(using ‘hold on’ when adding a new plot to the figure).

Bar plots

You can also make barplots.
>close all
>x=0:5:20;
>y=[3*x+4]
>ph=bar(x, y)
Here are some of the properties you may often want to change for a simple bar plot

Line plot
property

How to set the property Comments

BarWidth set(ph, 'BarWidth', .5) Width of bars
LineWidth set(ph, 'LineWidth', 1.5) Thickness of lines surrounding bars
EdgeColor set(ph, 'EdgeColor',[1 0 0]) Color of the lines surrounding bars

FaceColor set(ph, 'FaceColor',[0 0 1]) Color of inside of bars

With more complex bar plots you get a handle for each set of data. Here we have two sets of y data for
every x-value
close all
x=0:5:20;
y=[3*x+4;2*x+2]'
ph=bar(x, y)
set(ph(1), 'FaceColor',[1 0 1])
set(ph(2), 'FaceColor',[0 .3 1])
set(gca, 'XTickLabel', {'Day 1', 'Day 5', ...
 'Day 10', 'Day 15','Day 20'})
legend([ph(1) ph(2)], 'Happy', 'Sad', 'Location', 'NorthWest')

Bar plots with error bars

Matlab doesn’t have a function to do this, so you need to use a work around. In the same way as I showed
you how to have more control over you error bar plots by plotting the error bars on top of the original data
plot, you can plot error bars on top of a bar graph. You may have to fiddle with the parameter width to make
it look right.

hold on
width=get(ph(1), 'BarWidth')-.1;
eh1=errorbar(x-width, y(:, 1), y(:, 1)/4, ...
 'Marker', 'none','Color', 'k', 'LineStyle', 'none')
eh2=errorbar(x+width, y(:, 2), y(:, 2)/5, ...
 'Marker', 'none','Color', 'k', 'LineStyle', 'none')

Hist

Hist creates histograms. One way to use hist is simply to tell it how many bins you want

clear all
close all
data=randn(3000, 1);
subplot(1, 3,1)
hist(data, 9);
set(gca, 'XLim', [-4.5 4.5])

If you want to know what the center of the bins are you can ask hist to return a list of the number of data
points in the bin (n1) and the centers of the bins (x1) instead of plotting the data. If you want to both know
the centers of the bins and plot the histogram then you will need to call hist twice.
[n1, x1]=hist(data, 9)

You can also give hist a vector of the bin centers. Here we are simply returning the number of data points
that fell within each bin. We already know where the bin centers are, because we defined them. We can
then plot the histogram using bar.

bins=-4:1:4
subplot(1, 3,2)
n1=hist(data, bins);
bar(bins, n1)
set(gca, 'XLim', [-4.5 4.5]);

histc takes in a vector that contains the upper and lower limits of each bin. It returns the number of data
points that fell within each bin. We can plot this again, using bar

subplot(1, 3,3)
n2=histc(data, bins);
bar(bins,n2,'histc')
set(gca, 'XLim', [-4.5 4.5])

Note that the number of bins is 9. That means we have 9 bins in the second subplot with the bin centers of -
4, -3, -2 … 2, 3, 4. In the third subplot we only have 8 bins, The first bin contains values from -4->-3, the
second bin contains values from -3->-2, the third contains values from -2->-1 and so on …

Plotting in 3d
Mesh

Let’s say you have an experiment in which the data is 3 dimensional. Suppose you were
looking at how age affects your ability to perform a task as a function of the time of day.
So you have two independent variables, the time of day and the age of the subject, and
one dependent variable, which is performance. Your data might look like this
 Time of day
 9 11 1 3 5 7 9

17 90 90 80 80 85 80 80
17.5 90 80 80 80 90 90 95

18 90 90 90 80 90 85 90
18.5 80 90 75 70 80 90 85

19 80 80 80 70 80 100 90
19 85 80 90 75 90 85 85
40 90 85 80 70 80 67 40
45 100 80 80 70 80 58 30
47 80 75 70 65 75 60 36
50 80 80 70 80 70 60 40
60 90 90 90 80 50 40 20
65 90 90 90 70 80 40 30
67 85 90 87 70 80 35 22
68 80 85 80 75 65 45 22

Age of
subject

69 95 83 85 85 75 38 25

This gives us the following data in Matlab

>>age=[17 17.5 18 18.5 19 19 40 45 47 50 …
 60 65 67 68 69 70];

 tod=[9 11 1 3 5 7 9];
>>tod(3:end)=tod(3:end)+12;

Note that that last line of code transforms the time variable into the 24 hour clock!

>>perf=[90 90 80 80 85 80 80
 90 80 80 80 90 90 95
 90 90 90 80 90 85 90
 80 90 75 70 80 90 85

 80 80 80 70 80 100 90
 85 80 90 75 90 85 85
 90 85 80 70 80 67 40
 100 80 80 70 80 58 30
 80 75 70 65 75 60 36
 80 80 70 80 70 60 40
 90 90 90 80 50 40 20
 90 90 90 70 80 40 30
 85 90 87 70 80 35 22
 80 85 80 75 65 45 22
 95 83 85 85 75 38 25
 90 80 90 80 80 36 18];

 >whos
Name Size Bytes Class

 age 1x16 128 double array
 ans 1x16 128 double array
 perf 16x7 896 double array
 tod 1x7 56 double array

We are going to use mesh(x,y,Z). The first two vectors must have length(x) = n and length(y) = m
where [m,n] = size(Z).

>> sh=surf(tod, age, perf)
>> xlabel('time of day')
>> ylabel('Age (years)')
>> zlabel('Performance')

You can rotate the view of this three-D graph using the mouse if you hit the little rotation icon on the top of
the menu bar. You can now play with various aspects of the figure

Try
>> shading flat
>> shading interp
>> colormap(gray)

 A useful command is view. If you rotate the graph to a good view, you might want to save the values that
represent that view in a matrix v (a 4x4 matrix) so you don’t have to manipulate it by hand the next time.
>>v=view
You can set the view to the desired view which you previously saved by using
>view(v)
Try saving a view, then rotate the graph manually, then use view to restore the graph to the view
that you saved/
Or you can provide the graph with the azimuth an elevation you desire (the azimuth and elevation
are basically simpler forms of the 4x4 matrix describing the view contained in v)
>view(60, 50)
There are also three default views
>view(1)
>view(2)
>view(3)

Also try
> mesh(tod, age, perf)

Surf and mesh can deal with missing data values as long as they are set to be NaN. It will simply
interpolate between the missing values.

> perf(3,1)=NaN; > perf(5,3)=NaN; perf(7,2)=NaN;
> sh=surf(tod, age, perf)

Plot3

This is often useful when you have one independent and two dependent variables. One example
would be if you were tracking the x and y position of a rat over time.
> t = linspace(0,6*pi,101);
> x = sin(t)+.1*randn(size(t));
> y = cos(t)+.1*randn(size(t));
> plot3(x, y, t, '.-');
> xlabel(‘x position’);
> ylabel(‘y position’);
> zlabel(‘time’)

This rat is a little confused.

Let’s suppose you were interested in seeing whether the rat reached a certain location (the food or the swim
platform?) within a certain time window. First let’s plot the position of this target on the time graph.

1
2
3
4

%plotExample2.m
%
%Example of plotting 3 dimensional data and locating a
certain area in the

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

%plot
%
%Plots the trajectory of a random process through space-time
(space 2d,
%time 1d).
%
%Written by IF (?) and commented by ASR 07/2007
%

close all
t= linspace(0,6*pi,101);
x= sin(t)+.1*randn(size(t));
y = cos(t)+.1*randn(size(t));
plot3(x, y, t, '.-');
xlabel('x position');
ylabel('y position');
zlabel('time');

twin=[10 17];
xwin=[1 2];
ywin=[-.5 1.5];

%line commands make a box in red around the time of interest
and location
%of interest:
lh=line([xwin(1) xwin(2)],[ywin(1) ywin(1)], [twin(xwin(1))
twin(xwin(1))]);
set(lh, 'Color', 'r')
lh=line([xwin(1) xwin(2)],[ywin(1) ywin(1)], [twin(2)
twin(2)]);
set(lh, 'Color', 'r')
lh=line([xwin(1) xwin(2)],[ywin(2) ywin(2)], [twin(xwin(1))
twin(xwin(1))]);
set(lh, 'Color', 'r')
lh=line([xwin(1) xwin(2)],[ywin(2) ywin(2)], [twin(2)
twin(2)]);
set(lh, 'Color', 'r')

lh=line([xwin(1) xwin(1)],[ywin(1) ywin(2)], [twin(xwin(1))
twin(xwin(1))]);
set(lh, 'Color', 'r')
lh=line([xwin(1) xwin(1)],[ywin(1) ywin(2)], [twin(2)
twin(2)]);
set(lh, 'Color', 'r')
lh=line([xwin(2) xwin(2)],[ywin(1) ywin(2)], [twin(xwin(1))
twin(xwin(1))]);
set(lh, 'Color', 'r')
lh=line([xwin(2) xwin(2)],[ywin(1) ywin(2)], [twin(2)
twin(2)]);
set(lh, 'Color', 'r')

lh=line([xwin(1) xwin(1)],[ywin(1) ywin(1)], [twin(xwin(1))
twin(xwin(2))]);
set(lh, 'Color', 'r')
lh=line([xwin(1) xwin(1)],[ywin(2) ywin(2)], [twin(1)
twin(2)]);
set(lh, 'Color', 'r')

62
63
64
65
66

lh=line([xwin(2) xwin(2)],[ywin(1) ywin(1)], [twin(xwin(1))
twin(xwin(2))]);
set(lh, 'Color', 'r')
lh=line([xwin(2) xwin(2)],[ywin(2) ywin(2)], [twin(1)
twin(2)]);
set(lh, 'Color', 'r')

This is clearly a little “wordy”. Here’s a way to shorten it up.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

%plotExample3.m
%
%Same example as plotExample2.m, but shorter and less
"wordy".
%
%Made by IF (?) and commented by ASR 07/2007

close all
t= linspace(0,6*pi,101);
x= sin(t)+.1*randn(size(t));
y = cos(t)+.1*randn(size(t));
plot3(x, y, t, '.-');
xlabel('x position');
ylabel('y position');
zlabel('time');

twin=[10 17];
xwin=[0.7 1.7];
ywin=[-.5 1.5];

%'mat' represents the facets of the area of interest
mat=[1 2 1 1 1 1; ...
 1 2 1 1 2 2; ...
 1 2 2 2 1 1 ; ...
 1 2 2 2 2 2; ...
 1 1 1 2 1 1; ...
 1 1 1 2 2 2; ...
 2 2 1 2 1 1 ; ...
 2 2 1 2 2 2; ...
 1 1 1 1 1 2; ...
 1 1 2 2 1 2; ...
 2 2 1 1 1 2 ; ...
 2 2 2 2 1 2];

 %The lines are drawn with a 'for' loop:

 for i=1:size(mat, 1)
 lh=line([xwin(mat(i, 1)) xwin(mat(i, 2))], ...
 [ywin(mat(i, 3)) ywin(mat(i, 4))], ...
 [twin(mat(i, 5)) twin(mat(i, 6))]);
 set(lh, 'Color', 'r');
 end

ind=find(t>=twin(1) & t<twin(2) & ...
 x>=xwin(1) & x<xwin(2) & ...

47
48
49
50

 y>=ywin(1) & y<ywin(2));

hold on
plot3(x(ind), y(ind), t(ind), 'g.-');

Lines 45-50. We’ve added some line finding out whether the rat made it into the box at the specified time,
and we’ve re-plotted those points as green

