DESIGNING AN EXPERIMENT

NOTE: This task makes use of the HID code – which does NOT work on a PC. PLEASE SIT ALONG ON A MAC TO VIEW THE DEMO. ON A PC you can still run this script with some modifications, by removing the call to hid_probe.m and all instances of inputDevice (ask me about this).
To start building this experiment from scratch, open up av_run_empty.m

edit av_run_empty.m

Notice that this is a script – not a function (there is no function call at the top). That’s because this is our main script – which will call our helper functions. At the top of this script you see a bunch of commented (%) lines, which give some generic info about the experiment. The first thing we do is clean up the space (line 76), both variables and figures. This is a good habit.

clear all; close all;

Next notice the placeholders for the main tasks. This organization scheme will hold for most of your experiments. It helps both to organize your thoughts and also to break up the coding into manageable chunks. We will fill in the chunks – by copying and pasting from this document. Again – if you just want to run the av_run.m code that’s fine. The following document is to help the novice. For the novice, if you want to skip looking into the function that’s fine too – just get used to reading the code in each section and try to understand what it does.

Now for two more items of business before we start the main experiment loop.

YOU’RE DONE, NOW WHAT?

Since we’re basically done you can run a block of this task. Before doing so, go into the av_setupIO.m file and comment out the lines of code that make the display window small (they have comments with the words for DBUGGING ONLY), and uncomment the full-screen openWindow command. You’re set to go.

After completing a block of the task, let’s look at what we’ve saved. What is the data that we collected? Well we’ve saved out three files actually. Here’s an example for the “demo” subject:

ls -l demo*

-rw-r--r-- 1 al al 730 Jul 9 16:49 demo_ AUD_20100710T150009.mat

-rw-r--r-- 1 al al 1472 Jul 9 16:49 demo_ AUD_20100710T150009.txt

-rw-r--r-- 1 al al 609 Jul 9 16:49 demo_design.mat

Notice the convention. We save using SUBJID, ID of the domain that was first in the block and the detailed time stamp. Do you recall where we set this session name?

The subject’s design file (e.g., demo_design.mat) holds some handy-dandy session parameters. You can view these by loading the file into matlab:

load demo_design

whos

 Name Size Bytes Class Attributes

 DESIGN 1x1 2070 struct

DESIGN =

 trial_seq: {[30x4 double] [30x4 double]}

 AUD_20100710T150009: [1x1 struct]

 AUD_20100710T151849: [1x1 struct]

This struct keeps track of all of the sessions with its own time stamp as well as of all the design sequences for each block ran. Above you see two 30x4 sequence matrices corresponding to two demo runs in which the audio task occurred on the first mini-block. Take a look inside each of these by using the ‘.’ to specify the field of interest:

DESIGN.AUD_20100710T150009

ans =

 script: 'av_run.m july 7, 2010, a.l.'

 date: '10-Jul-2010 15:00:09'

 seed: 2.0515e+05

 specs: [1x1 struct]

What else can you add into this handy structure? HINT: Summary statistics for behavioral performance. Where would you add code to accomplish this?

Finally, the *.mat and *.txt files are identical except for the presence of column headers in the text file. The duplicity is purely for back up. The columns in these files contains the event identifiers (cols 1 and 2), duration (col 3), onsets (col 4) as well as other goodies. You can figure out what these are by referring back to the code at the end of the Experiment Loop (or look at the headers!).

What’s the next step? Write a script to analyze these data, produce plots etc. It’s also a very good idea to create some dummy data with which to test these analysis scripts.

Happy experimenting…

1. PTB SETTINGS

Before doing anything else we need to set up our PTB settings. We’re going to add three settings – though obviously you can take away or add other precautions.

The first is to minimize debugging routines (which can be disruptive).

The second is to suppress warning (which can get annoying).

The third is to ‘UnifyKeyNames’. This is actually quite important. On Macs it ensures that PTB adapts a naming scheme for keyboards that generalizes across operating systems (ensuring that KbName has consistent KeyCodes and names for keys regardless of platform).

Add the following three lines just after the PTB Settings placeholder.

Screen('Preference', 'VisualDebugLevel', 0); %minimize debug routines

oldLevel=Screen('Preference', 'Verbosity', 0); %suppress warnings

KbName('UnifyKeyNames'); 				 %unifies keyboard

HideCursor;							%hides cursor

While we’re here let’s ensure that we close these settings at the end of the experiment. Add the following lines of code to the last place holder – under %% CLOSE SESSION:

%reset original warnings defaults

Screen('Preference','Verbosity', oldLevel);

Screen('Preference', 'VisualDebuglevel', 3);

Screen('CloseAll');

ShowCursor;

We’re doing this so that we can run the code as we build it – this is lesson 1 of debugging 101! Save the av_run_empty.m script. Then run it by typing its name at the command prompt, and pressing return:

av_run_empty

Not much happens… yet.

2. SESSION PARAMETERS

The next step is to set up the parameters for the session. Add the following lines into the %% COLLECT INPUT VARIABLES & SET UP SESSION PARAMS section:

odd = 2; std = 1; null = 0; 	% condition codes for later

rest = 9; audio = 1; led = 2;	% condition codes for later

[SUBJ_ID,TASK_FLAGs,DUAL_FLAG,FLAG_MRI, DESIGN, SESSION,SESSION_NAME] = av_get_params;

Then open av_get_params.m. Notice that it is a function, not a script. There is a function call at the top. This function takes in no input argument but spits out a bunch of output arguments. Three things occur here:

We ask for the subject name, and for the experimenter to specify which domain to start and which domain to start with.

We record session variables into SESSION. This is something called a struct – it saves multiple variables into one structure.

We create the design matrix for the block. This means setting # targets, non-targets, jitter, onsets etc. Generally I would create the design parameters in a prior step, save these into a file and load them up at testing. But for demo purposes we’re creating these online. Later in the course you will learn about optimizing sequences for fMRI – at that point you can modify this code with a more fMRI-optimized design or test its optimality.

Now let’s look at its output. Save and then run your script by typing: av_run_empty. Provide the requested input arguments according to your liking. Then type whos to see the output arguments. You will see the FLAGS binary (0/1) variables, these indicate condition settings. The MRI flag is set at 0 for now – but this can change. Type SESSION to see info about the current session. If you type DESIGN you’ll see:

DESIGN = trial_seq: [482x4 double]

This struct holds the variable trial_seq (trial sequence), which identifies 482 events for the block. The first two columns code the trial type (0 = null event (blank screen/jitter), 1 = non-target, 2 = oddball, 9 = rest) for each modality (visual/audio). You can see this by typing:

plot(DESIGN.trial_seq{1}(:,1))

% to see trial codes graphically - change 1 to a 2 to see column 2

OR

DESIGN.trial_seq{1}(1:10,:)

% to see all specs for the first 10 events at command line

The third column hold the duration of each event, and the fourth column holds the cumulative duration up to the current trial (time since first stimulus onset, both in seconds - HINT – the latter correspond to event ONSETS). Notice that every other row is a null event – this is the blank screen between stimuli. Its duration is jittered around 700 ms. The stimulus durations are 100 ms. Also notice the rest period events (30 sec duration). To see the mini-block structure look at the TASK_FLAGs variable: plot(TASK_FLAGs); axis([0 500 0 3])

SET SOME VARIABLES [OPTIONAL READING for step A6]

This section is optional. Four tasks were accomplished in A6. First we retrieve the index and the duration for the current event.

 % get event variables

 iEVENT = (b-1)*nEvents + e;

 TRIAL_DUR = trialseq(e,3);

Next we correct timing. This line says that if the difference between the loop start (blockStart – set just before A6) and the current time is less than the expected time, then we do nothing (i.e., wait). We also calculate a penalty in case we’re running late (this will be applied to the jitter on the current trial).

 % such timing synch to 'expected' start time

 while (GetSecs - blockStart) < trialseq(e,4), end

 %penalize offset if timing is late

 if trialseq(e,1) == null || trialseq(e,1) == rest

 STIM_PENALTY = (GetSecs - blockStart) - trialseq(e,4);

 end

We start the timer for the current event, and record the onset of this event in the fifth column of the output variable.

 % start event timer

 eventStart = GetSecs;

 outVars(iEVENT,5) = eventStart-blockStart; %actual event onset

Finally we update the counter for our trials (this isn’t actually necessary – but we might need it).

 % start counter for trial number (b/c a trial = 2 events)

 if trialseq(e,1) == null

 TRIAL_NUM = tcount;

 else

 TRIAL_NUM = tcount;

 tcount = tcount+1;

 end

START EVENT PRESENTATION [OPTIONAL]

The event presentation is nested in a if-else-end loop (use help “if” to learn the usage). This looks big but it’s not. BUT this code should really be its own function (maybe you can write one later?).

In either case the long-winded if statement has three sections, one for each type of event: null (jitter), task and rest. The code within each section is not that complex. But to understand it better let’s pause within the task using the keyboard command. Insert this command immediately below the title % START EVENT PRESENTATION (it should already be there but commented out).

Save the script, run it and get ready to work at the keyboard prompt…

3. AUDIO/VISUAL DEFAULTS

Next we’ll get PTB ready to present the audio and visual stimuli. Add the following into the %% SET UP AUDIO/VISUO DEVICES and I/O STREAM section:

[inputDevice,experimenter_device,pahandle,FS,w,xcenter,ycenter] = av_setupIO(FLAG_MRI);

and add the following to the %%CLOSE SESSION section:

% close screen, or block transition screen, and audio device

PsychPortAudio('Close', pahandle);

Again, let’s look inside. Open up the av_setupIO.m script using edit. Once again you’ll see that we have a script. This script is pretty straightforward. It runs hid_probe to get the subject response device. It also has an IF statement for the MRI situation in which it asks for the experimenter device. We don’t yet use this option – but it’s handy if, for instance, you use a button box for subject responses but then also want to have experimenter-access to the keyboard to control the experiment!

Next we set some defaults for the audio stimulus and initialize the sound driver. Finally, we set up display: a) check screens and window size, b) set default CLUT values for black and white, c) find the center of the screen, d) set text defaults, and e) display the welcome screen!

Notice that there are three lines commented out after we open our window:

w=Screen('OpenWindow', screenNumber,0,[],32,2);

%Screen('Preference','SkipSyncTests',1); %DEBUGGING ONLY

%w=Screen('OpenWindow',screenNumber,0,[0 0 800 600],32,2); %DEBUGGING LPTOP

%w=Screen('OpenWindow',screenNumber,0,[200 0 1280 824],32,2); %DEBUGGING DSKTOP

These lines turn-off synchronization tests and set a default window-size to be small (and in the left top corner). This is helpful if you’re just programming experiment – like now. This is lesson 2 in debugging 101!

So uncomment the first and third of the commented lines above, and COMMENT OUT the original line at the top:

%w=Screen('OpenWindow', screenNumber,0,[],32,2);

Save, then run your experiment. What do you see? Is there an open blank window in the left top corner of your screen. If not, check in with the instructor!

Great. Do you have a window stuck on the screen? How would we kill it if it didn’t close? Remember the clear screen option command: Screen(‘ScreenClearAll’)? Let’s use its shortcut:

sca

The above command is the short form for Screen(‘ClearAll’) – it should have killed the open window. You’re ready to move on now…

4. STIM and RESPONSE DEFAULTS

The next placeholder in your script is for response/stimulus set-up. To do this we add a call to a function design to do this. Place the following two lines in the %% SET UP STIMULI and RESPONSE DEFAULTS section:

[LEFT,RIGHT,escapeKEY,AUDIO_STD,AUDIO_ODD,LED_STD,LED_ODD,EMPTY_STIM,WARNING] = av_setupSR(FLAG_MRI,FS);

AUDIO = [AUDIO_STD; AUDIO_ODD]; %store audio stimuli in one matrix

LED = {LED_STD; LED_ODD}; %store visual stimuli in one cell array

Open up the av_setupSR.m file. Inside the av_setupSR function we first see response button settings. These are not applicable to the current task (b/c we’ll be accepting spacebar responses) – but I’ve left these here as a template. We might need to use and modify this code if we decide to collect responses in the scanner for instance. Note, in our scanner the trigger = 5 (do you see this?). Also note that for now the fMRI assignments are not outputted by the function – clearly we’d need to change this if we modify this script for fMRI (ask me if you’re not sure how).

Setting the escapeKEY variable is crucial – this is so that the user can escape from the experiment at any time. Obviously this won’t apply in the scanner in which, you, the experimenter will control the task.

Finally we make our stimuli ahead of time. In the present case this isn’t crucial because it’s fast. But if you image working with big images that have to be loaded individually, that’s where pre-loading stimuli is critical to maximize timing accuracy for stimulus presentation.

So, on to our stimuli. The “standard” or non-target sounds will be at 1000 Hz, and the targets will be at 2000 Hz. Notice that we call on the script av_make_tone.m to actually create the pure-tone waveform – take a look inside to see how this is done. Remember you can hear the tones by using the sound.m function (set FS=22050):

e.g., sound(AUDIO_ODD,FS)

To make the visual stimuli we create a sine-wave grating and filter it with a Gaussian – and give the oddball a slightly higher frequency. To view the images just run the code for each LED (i.e., VISUAL) stimulus and use the following to view:

e.g., image(LED_STD); colormap(gray(256));

Again you should now save the script and run it. This helps ensure that there are not bugs anywhere. Not much will happen, but you’ll see your new variables in the workspace (whos). Remember, to kill the screen use the sca command.

If you don’t like these stimuli you can change them! It’s your choice – you can load images, make up drawings, or create silly sounds to change the experiment. If you poke around the Part4 folder you’ll find some other stimuli there to play with. Note – the second line (AUDIO = []) above simply places both audio waveforms in one matrix – as separate columns. This is a convenience for later reference in the main script.

5. FILE I/O

One last thing before we write the experiment loop. We need to set up a file to save out our data. Add the following lines in the %% SET UP FILES FOR RECORDING VARIABLES AND RESPONES

placeholder:

logfile=sprintf('%s_%s.txt',SUBJ_ID,SESSION_NAME);

fprintf('A log of this session will be saved to %s\n',logfile);

fid=fopen(logfile,'a');

if fid<1,

 error('could not open logfile!');

end

%print file names

fprintf(fid,'trialAUDIO\ttrialLED\teventDur\teventOnset\teventOnsetActual\trespTime\tcorrect\tmisses\tfalseAlarms\tfoilOddball\tevent\ttrialNum\tblock\ttaskDomain');

The first part of this script assigns a name to the logfile – comprised of the subject id and the session name. We then open the file and write a header as the first line, which has the column-names of all of the variables that we are going to save. This is just one third of the I/O protocol. The generic protocol is as follows …you will see this implemented across the experimental script:

a) OPEN A FILE (at start)

fid = fopen ('data.txt', 'w');

b) WRITE TO THE FILE (on each trial)

A=someDATA;

fprintf(fid,'%s \n','This is the header');

fprintf(fid,'%2.2f \t %2.2f \t %2.2f \t %2.2f \t %2.2f \n', A)

c) CLOSE FILE (at end)

fclose(fid);

The conventions here are Matlab and C. For instance, %2.2f indicates that we’re writing a number with 2 decimal points. The \t means to include a tab, and \n means to skip to another line. Please read the usage/help documentation to learn how to use these Matlab I/O functions.

CLOSE FILE

Since we’re here… let’s also add code to close our file. Add the following to the last placeholder (above or below the existing code – it doesn’t matter) %% CLOSE SESSION:

fclose(fid);

Save and run your file, and kill the screen. Now look in the directory – do you see a text file with your name, task choice, and date? Take a look inside? See the headers?

6. THE EXPERIMENT

We’re now ready to add the loop that actually runs the experiment! There is a lot here so let’s work through it in batches. First open up EXPMTLOOP.txt and copy the code directly beneath %% START EXPERIMENT of av_run_empty.m. Save the file. The sections are numbered A# to make the work-through easier.

A1. We set a dummy block variable to 1 (b/c we run 1 block at a time here). We initialize the output variable matrix and grab the design matrix.

A2. We flip up a screen – that’ll vary in text according to whether we’re in the scanner or not.

A3. We then wait for a response – from the trigger if in the scanner and from the keyboard if not in the scanner. Note that this code asks the experimenter to press a button when they start the scanner so that we can check how much offset there is between scanner start and when it starts to collect images (and thus sends a trigger).

A4. We put up a blank or 4 seconds then present a warning tone to indicate that the experiment is starting. REMEMBER TO ADD THIS 4 SEC DELAY TO YOUR GLM REGRESSORS.

A5. This is the keyboard command and here is your debugging 101 lesson 3. This command will pause the experiment and return you to the keyboard. For instance, if you get an error/crash, you can place keyboard above the line that caused the error. This will allow you to stop at that point and explore the workspace and syntax to find your error! To see how it works, uncomment it, save your script and run it. Press any key once the welcome screen loads up. Then look at the command line. You should see a keyboard prompt (“K”):

K>>

Now type sca. Screen is gone but you’re still at in keyboard mode. Type whos to see what’s in the workspace. To get out of this mode type dbquit. Note though that in a real situation you can also use dbcont to continue the script. These are handy Matlab debugging commands.

Remove the keyboard command and resave the file.

A6. Now start the serious stuff. Here we start a loop to process each of the events (task, jitter, and rest). To learn about loop structures check out the help file for “for”.

For each event we will do the following:

	

set some variables for that event

show the event and check timing

get response variables and write to file

Now let’s look at these three steps in detail… and finally make use of the keyboard command

THE NEXT TWO PAGES ARE OPTIONAL ADVANCED ACTIVITIES!

A NOTE ABOUT MODULARITY: We’re now going to start adding code that does stuff. You will notice that what we’re doing is assembling function calls into our main script. This is a coding convention – you can physically code all of your program-tasks into one script instead. However the modularity approach is preferable because: a) it makes reading the main script easier (clearer!), b) makes debugging easier, c) allows for transfer of functions (i.e., you might use the same function – with small modifications – to read responses in many experiments!

Let’s start…

OK so now what? The function paused at the keyboard command – this is the first event of the block. Execute the first command following the keyboard line – which is the following:

TASK_FLAG = TASK_FLAGs(e);

Look at TASK_FLAG. Is it 1 or 2? If one, you’re doing the audio task, if two you’re doing the visual task. Does this number match what you selected as your first task during session setup? Now also execute the first line of the IF statement:

trialseq(e,TASK_FLAG)

This line retrieves the trial code for the current event. Is the event null (0), rest (9), or task (1 or 2)? (hint – it should be task if it’s the first one). Good. It’s the task. Now go to the task section of the IF statement (it’s the last third, called “TASK EVENT”).

What’s going on here? Copy the code preceding the SHOW EVENT section to the command line. Look at these variables (maybe even plot or image a few). Do you understand what’s going? You’ve assigned a specific stimulus to both the audio and visual stream. However notice that one of these is empty (zeros) because, obviously, you’re only doing one task! You’ve also assigned a few response variables that you shouldn’t worry about for now!

Now copy and paste to the command line, the code in the SHOW EVENT section:

 %##############################

 % SHOW EVENT (SIMULTANEOUSLY!)

 %##############################

 PsychPortAudio('FillBuffer', pahandle, CURR_STIMULUS_A);

 PsychPortAudio('Start', pahandle, 0, 0, 0);

 Screen(w,'PutImage',CURR_STIMULUS_V);

 Screen(w,'Flip');

 WaitSecs(TRIAL_DUR);

 % PsychPortAudio('Stop', pahandle); % we don’t need to STOP the driver

 Screen(w,'FillRect',0);

 Screen(w,'Flip');

 %##############################

What happened? Did you see/hear the stimulus for your task? You should have. Congratulations – you have just witnessed the first trial of the experiment! Question: Why do we not need to make a call to “Stop” the PsychPortAudio driver in this implementation?

OK we’re almost there. Before proceeding feel free to move through a few more trials manually by typing dbcont at the command line. This will loop through the next event and stop when it hits keyboard again. Notice that you only get a stimulus every second time – this is because our stimuli and jitter are coded as separate events.

You can also try to place keyboard in a different place, or walk through the commands in a different event to see what happens. When you’ve had enough type dbquit.

END OPTIONAL

SAVE THE RESPONSE VARIABLES

In this task a “response” is any key press. It is collected during the null events (the jitter). Take a look at the code for the “NULL EVENT” and you’ll see that we’re waiting for a key press. This is notable b/c if there is a key press we’ll have to add 100 ms to it (for the duration of the preceding stimulus) to get an accurate RT.

Now look inside the next bit of the code:

 %##############################

 % RECORD VARIABLES FOR CURRENT TRIAL

 %##############################

Here a few straightforward events occur:

We move event specs into the outVars variable (this is where we store all of the specs about what happened on each event).

outVars(iEVENT,1:4) = trialseq(e,1:4);

We record whether responses were made, if they’re correct, misses or false alarms.

if trialseq(e,1) == null … end

We also record the event number, the trial number and the block number (always 1), as well as which domain was relevant (audio or visual).

After everything has been tabulated we write the contents of outVars for the current event into the file that we previously opened. The try/catch statement will ensure that an error is recorded if it occurs. The alternative would be for the script to crash!

fprintf(fid,'%d\t%d\t%0.2f\t%0.2f\t%0.2f\t%d\t%0.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d',outVars(iEVENT,:));

Finally we tabulate performance statistics for the current block (including some odds and ends about the timing of the session)!

Finally we display the results on screen for 2 seconds minimum. A subsequent keypress will end the display.

Check out how all this looks by running this script with “demo” as the subject name. You’ll get to do the task but for 15 trials only, e.g.,

av_run

Enter subject identifier string (e.g., B7-40, demo): demo

Start with audio task (1 yes, 0 no): 0

That’s the task. Now let’s finish up.

7. ERRORS CONTROL

We’ve already done quite a bit of error control in this code. We’ve used the keyboard command, we use a small window for display and we use modular code to make it easier to debug. However one bit of inline control we can implement is the try-catch statement. We’ve already encountered it while writing responses output to file.

This statement (see its help file) functions by running whatever is in the “try” segment, and if it encounters an error it moves to the “catch” segment. The utility of it is that if there is an error during one event, this doesn’t crash your program. You can still save out the files and/or complete whatever other comments are in your script. That is – the error exists “safely”.

help try

 TRY Begin TRY block.

 The general form of a TRY statement is:

 TRY, statement, ..., statement, CATCH, statement, ..., statement END

 Normally, only the statements between the TRY and CATCH are executed.

 However, if an error occurs while executing any of the statements, the

 error is captured into LASTERROR and the statements between the CATCH

 and END are executed. If an error occurs within the CATCH statements,

 execution will stop unless caught by another TRY...CATCH block. The

 error string produced by a failed TRY block can be obtained with

 LASTERROR.

Add the command try just above the %%START EXPERIMENT line. Then add the following just beneath the %%CATCH ERRORS line:

 catch

 errmsg = lasterr;

 fprintf('\nEXITED THROUGH CATCH STATEMENT:');

 fprintf('\n%s\n\n',errmsg);

 fprintf(fid,'\n%s',errmsg);

 end

By this code we “TRY” to run the experiment loop, but if it fails we’d like to exist through the catch statement. This allows us to complete the commands in the subsequent %%CATCH ERRORS section. One important command here is fclose(fid) – which closes and secures our log file. Note that if you do get an error – you’ll have to remove the try-catch statement in order to diagnose it closely because otherwise it won’t display (it’ll be silently ignored by the catch clause, and assigned to the errmsg variable).

Finally, a key “error” that we have to deal with is TIMING. We accumulate errors with each offset in display of stimuli or collection of responses. We’ve already done our best with the ‘Flip’ command and with precisely timed audio stimuli to control this. But errors do persist, be it at ms scale. To keep our timing accurate we’ve include a load of checks on timing… see if you can find them in the code.

HINT: You’ll find them in the stimulus presentation loop both before and after the stimulus presentation. You’ll also so see sanity checks within the null and rest events – because this is a good place to modify the event duration if, for instance, we’re running behind and need to catch up time. Can you differentiate the calls which “catch up” time from those that “wait” to catch up to the clock?

FOOD FOR THOUGHT…

How could you go about improving the event presentation for fMRI (e.g., optimize to capture HRF for targets)?

How will subject differences in being able to discriminate the target and standard affect the result? How can you control for this effect?

How can ensure that the sound is presented at an appropriate intensity in the scanner? (e.g., check out soundcheck.m in this directory and the staircase scripts in Part5)

What kind of questions can you ask with this paradigm?

How could you modify either the experiment (without making any major changes to the design) or change the instructions to ask novel questions?

How would you go about designing an event-related experiment (check out Part4 for an example)?

8. CLEAN UP (more code for the %% CLOSE SESSION)

Almost there! We’ve actually been cleaning up as we go, so that last section is mostly filled out. Add the code below to the end of your script in order to save out the outVars variable – which holds the output responses – as a matlab *mat file:

 % SAVE SESSION into DESIGN struct, .TXT LOG and .MAT file

 eval(['DESIGN.' SESSION_NAME '= SESSION;'])

 eval(['save ' SUBJ_ID '_design.mat DESIGN'])

 matfile=sprintf('%s_%s.mat',SUBJ_ID,SESSION_NAME);

 eval(['save ' matfile ' outVars']);

To understand the task, first let’s run the demo version. Run av_run.m, with subject name “demo”. Run once selecting audio task first, and once selecting visual task first. Select whichever option corresponds to KEYBOARD. This is an oddball task – your job is to press any key (spacebar) when you hear a high-frequency tone OR see high-frequency grating:

av_run

Enter subject identifier string (e.g., B7-40, demo): demo

Start with audio task (1 yes, 0 no): 0

For responses choose whichever devices corresponds to your keyboard (e.g., Keyboard, Apple Internal Keyboard / Trackpad).

In the real task we’ll be alternating between 30 sec of task and 30 sec of rest (blank screen), for 6 min 30 sec. This weekend you may want to collect 4 runs of this design (not necessarily this task). In this tutorial, the task will alternate between audio and visual oddball mini-blocks. To see a full 6’30’’ block of the experiment run the script but enter your own subject name.

The following describes the code that’s in av_run.m. You can either follow along the tutorial below to built the task from scratch or just look at the script and run it.

