PSY 593: Lecture 10

16 April 2004

Movies

Another type of animation is a movie. A movie is an animation in which you have pre-computed all of the frames of the animation, storing them in sequence into memory—an offscreen window. The frames can then be played, one frame per screen refresh, using the Screen CopyWindow function. A concise example is the MovieDemo.m script. A movie animation needs to be used when you have generated or imported the images you want to display, because the Screen PutImage function is too slow to draw each frame to the screen in time to avoid a display artifact.

Dynamic noise

For example, the following script displays a random dynamic noise stimulus.

% colored noise movie colornoise.m

nframes = 100;
% number of frames in movie

s=200;
% size of square (pixels)

[w,rect]=Screen(0,'OpenWindow',0);

centerect=[rect(3)-s,rect(4)-s,rect(3)+s,rect(4)+s]/2;

woff=zeros(1,nframes);

for i=1:nframes

img=255*rand(s,s,3);
% colored noise image

woff(i)=Screen(0,'OpenOffscreenWindow',0,[0 0 s s]);

Screen(woff(i),'PutImage',img)

end

% wait until all keys released

kdown=1;

while kdown

kdown=kbcheck;

end

f=0;

while(~kdown)

f=mod(f,nframes)+1;
% cycle through frames

%f=floor(nframes*rand)+1;
% uncomment this for random sequence

Screen('CopyWindow',woff(f),w,[],centerect)

Screen(w,'WaitBlanking')

kdown=kbcheck;

end

Screen('CloseAll')
% close main and offscreen windows

You can observe some interesting perceptual phenomena using such stimuli. For example, in the next script, you will be able to control the movement of a smaller patch of dynamic noise. Notice what happens when you move the smaller patch over the edge of the larger patch, and then completely interior.

% colored noise movie with smaller patch colornoisemouse.m

nframes = 100;
% number of frames in each movie

s=[200 50];
% size of square (pixels)

bgcolor=[0 0 0];

[w,rect]=Screen(0,'Openwindow',bgcolor);

centerect=[rect(3)-s(1),rect(4)-s(1),rect(3)+s(1),rect(4)+s(1)]/2;

woff=zeros(2,nframes);

for j=1:2

for i=1:nframes

img=255*rand(s(j),s(j),3);
% colored noise image

woff(j,i)=Screen(0,'Openoffscreenwindow', ...

bgcolor, [0 0 s(j) s(j)]);

Screen(woff(j,i),'PutImage',img)

end

end

% wait until all keys released

kdown=1;

while kdown

kdown=kbcheck;

end

HideCursor

while(~kdown)

f=floor(rand*nframes)+1;

Screen('CopyWindow',woff(1,f),w,[],centerect)

[x y]=GetMouse;

x=min(rect(3)-s(2)/2,max(s(2)/2,x));

y=min(rect(4)-s(2)/2,max(s(2)/2,y));

smallrect=[x-s(2)/2,y-s(2)/2,x+s(2)/2,y+s(2)/2];

Screen('CopyWindow',woff(2,f),w,[],smallrect)

Screen(w,'WaitBlanking')

Screen(w,'FillRect',bgcolor,smallrect)

kdown=kbcheck;

end

Showcursor;

Screen('CloseAll')
% close main and offscreen windows

Compare this to the static case (comment out the definition of f in the while loop and replace it with f=1;). What are the perceptual differences between the static and dynamic stimuli?

Drifting grating

Here is an example displaying a computed function, in this case a drifting Gabor patch (a sine wave with a Gaussian envelope).

% drifting grating with Gaussian envelope: driftingrating.m

% modified from DriftDemo.m

[w,rect]=Screen(0,'OpenWindow');

white=WhiteIndex(w);

black=BlackIndex(w);

gray=(white+black)/2;

inc=white-gray;

Screen(w,'FillRect',gray);

% compute each frame of the movie

s=400; % size of grating (pixels)

nframes=25; % temporal drift period of grating (frames)

woff=zeros(1,nframes);

[x,y]=meshgrid((-s+1)/2:(s-1)/2,(-s+1)/2:(s-1)/2);

angle=30*pi/180; % 30 deg orientation.

f=0.05*2*pi; % cycles/pixel

a=cos(angle)*f;

b=sin(angle)*f;

genv=exp(-((x/90).^2)-((y/90).^2));
% Gaussian envelope

for i=1:nframes

phase=(i/nframes)*2*pi;

img=genv.*sin(a*x+b*y+phase);

% barber pole illusion: use 1 instead of genv above

woff(i)=Screen(w,'OpenOffscreenWindow',0,[0 0 s s]);

Screen(woff(i),'PutImage',gray+inc*img);

end

% show the movie

destrect=[rect(3)-s,rect(4)-s,rect(3)+s,rect(4)+s]/2;

kdown=1;

while(kdown)

kdown=kbcheck;

end

f=0;

while(~kdown)

f=mod(f,nframes)+1;

Screen(w,'WaitBlanking');

Screen('CopyWindow',woff(f),w,[],destrect);

kdown=kbcheck;

end

Screen('CloseAll');

Color table (CLUT) animation

The next type of animation we will cover is achieved by manipulating the color lookup table (CLUT). Remember, when using 8-bit color, the computer’s video card uses a list with 256 entries to determine the mapping between the color number drawn to the screen (0 to 255) and the RGB triplet color value (three values, each ranging from 0–255). With 8-bit color, you can use only 256 different colors on the screen at once, but each of these 256 colors can be chosen from all possible RGB values (16.8 million colors).

The reason to use CLUT animation is because it is fast. You can animate an object that covers the entire screen. Using a traditional animation (either by drawing and erasing the object, or using a movie), the video bandwidth is usually too slow to be able to animate a screen-sized object in real-time, that is, with a new frame drawn every video refresh.

The way CLUT animation works is that you draw an object to the screen once, and then you animate it by changing the CLUT entries. That is, you will be changing the way the numbers on the screen are mapped to their corresponding colors, thereby changing the color of an object on the screen.

Here is an example program:

% CLUT animation demo

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

nx=20;
% number of horizontal rectangles

ny=nx*rect(4)/rect(3);
% number of vertical rectangles

img=floor(256*rand(ny,nx));

clut=floor(256*rand(256,3));

Screen(w,'PutImage',img,rect);
% expand image to fill screen

kdown=1;

while(kdown)

kdown=kbcheck;

end

while(~kdown)

clut=clut(randperm(256),:);

Screen(w,'SetClut',clut);

kdown=kbcheck;

end

Screen(w,'Close')
Note that Screen SetClut automatically waits for a screen refresh, so you do not need to call an additional Screen WaitBlanking when you use CLUT animation.

You may be wondering whether CLUT animation is necessary at all. What sort of artifact might we see if we were to try to make such a display using traditional animation? This is a good exercise in testing the performance of the computer you are using. There are at least four other ways to do this that I can think of.

The first traditional method (tradanim1.m) uses Screen PutImage to draw a new image to the screen each frame. Only it takes more than one frame to draw the image, and you should see an artifact:

% traditional animation method # 1 using PutImage

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

nx=20;
% number of horizontal rectangles

ny=round(nx*rect(4)/rect(3));
% number of vertical rectangles

clut=floor(256*rand(256,3));

Screen(w,'SetClut',clut)

kdown=1;

while(kdown)

kdown=kbcheck;

end

while(~kdown)

img=floor(256*rand(ny,nx));

Screen(w,'PutImage',img,rect);
% expand image to fill screen

Screen(w,'WaitBlanking');

kdown=kbcheck;

end

Screen(w,'Close')

The second traditional method example (tradanim2.m) uses Screen FillRect to draw each rectangle to the screen.

% traditional animation method # 2 using FillRect

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

nx=20;
% number of horizontal rectangles

ny=round(nx*rect(4)/rect(3));
% number of vertical

sx=rect(3)/nx;

sy=rect(4)/ny;

clut=floor(256*rand(256,3));

Screen(w,'SetClut',clut)

kdown=1;

while(kdown)

kdown=kbcheck;

end

while(~kdown)

for x=0:sx:rect(3)-sx

for y=0:sy:rect(4)-sy

Screen(w,'FillRect',256*rand,[x,y,x+sx,y+sy]);

end

end

Screen(w,'WaitBlanking');

kdown=kbcheck;

end

Screen(w,'Close')
The third traditional method (tradanim3.m) creates a movie in memory first and then plays it with Screen CopyWindow.

% traditional animation method # 3 using CopyWindow

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

nx=20;
% number of horizontal rectangles

ny=round(nx*rect(4)/rect(3));
% number of vertical

clut=floor(256*rand(256,3));

Screen(w,'SetClut',clut)

nframes=100;
% frames in the animation

woff=zeros(1,nframes);

for i=1:nframes

woff(i)=Screen(w,'OpenOffscreenWindow',0,[0 0 nx ny]);

img=floor(256*rand(ny,nx));

Screen(woff(i),'PutImage',img);

end

kdown=1;

while(kdown)

kdown=kbcheck;

end

while(~kdown)

f=floor(nframes*rand)+1;

Screen('CopyWindow',woff(f),w,[],rect);

Screen(w,'WaitBlanking');

kdown=kbcheck;

end

Screen(w,'Close')
The fourth traditional method example (tradanim4.m) is a minor variation of the above. It also makes a movie and uses Screen CopyWindow, but this time, it stores the full-frame image in the offscreen window, such that when it copies the offscreen window to the main window, the copying speed is maximized (it won’t have to rescale the image). Depending on the memory your computer has, you may not be able to create 100 full-size offscreen windows, so I’m changing this to 10 for the program below.

% traditional method # 4 using full-screen CopyWindow

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

nx=20;
% number of horizontal rectangles

ny=round(nx*rect(4)/rect(3));
% number of vertical

clut=floor(256*rand(256,3));

Screen(w,'SetClut',clut)

nframes=10;
% frames in the animation

woff=zeros(1,nframes);

for i=1:nframes

woff(i)=Screen(w,'OpenOffscreenWindow',0);

img=floor(256*rand(ny,nx));

Screen(woff(i),'PutImage',img,rect);

end

kdown=1; while(kdown), kdown=kbcheck; end

while(~kdown)

Screen('CopyWindow',woff(floor(nframes*rand)+1),w);

Screen(w,'WaitBlanking');

kdown=kbcheck;

end

Screen(w,'Close')

Are any of the traditional methods able to display a full-screen animation with no artifacts? Probably not, unless you have a particularly fast computer and video card.

Motion with CLUT animation

CLUT animation is very versatile. For example, it is possible to create moving stimuli using CLUT animation by turning on and off different parts of the image (“off” meaning changing their CLUT entry to the background color and “on” meaning changing their CLUT entry to a foreground color). In the next example program, we will display an oscillating full-screen oval that is drawn in many segments and animated through CLUT animation.

% CLUT animation demo

[w,rect]=Screen(0,'OpenWindow',0,[],8);
% open 8-bit window

bgcolor=[0 0 0];

fgcolor=[255 255 255];

clut = repmat(bgcolor,[256,1]);

Screen(w,'SetClut',clut);

nseg=255;

dx=rect(3)/nseg/2;

dy=rect(4)/nseg/2;

for i=1:nseg

orect=[(i-1)*dx,(i-1)*dy,rect(3)-(i-1)*dx,rect(4)-(i-1)*dy];

Screen(w,'FillOval',i,orect)

end

kdown=1;

while(kdown)

kdown=kbcheck;

end

f=0;

while(~kdown)

i=round((1+sin(2*pi*f/nseg))/2*nseg)+1;

f=f+1;

clut(2:i,:)=repmat(bgcolor,[i-1,1]);

clut(i+1:256,:)=repmat(fgcolor,[256-i,1]);

Screen(w,'SetClut',clut);

kdown=kbcheck;

end

Screen(w,'Close')

As you can see, this script works by drawing the segmented oval to the screen only once and then the movement is created by changing the CLUT entries for the different segments of the oval.

Flickering checkerboard stimuli

Many visual experiments employ flickering checkerboards as stimuli because they strongly activate low-level visual areas in the brain. CLUT animation is useful for such stimuli, since they tend to fill the screen and we want to avoid visual artifacts that may distract or draw the attention of the subject away from any behavioral task they may be performing.

% flickcheck.m: flickering checkboard pattern

bg_index=0;

check_index=1;

[w, rect] = SCREEN(0, 'OpenWindow', bg_index, [], 8);

clut=zeros(256,3);

clut(bg_index+1,:) = [127 127 127];

clut(check_index+1,:) = [255 255 255];

clut(check_index+2,:) = [0 0 0];

SCREEN(w,'SetClut',clut);

flicker_freq = 4;
%flicker frequency for full black-white cycle (hz)

flick_dur = 1/flicker_freq/2;
% duration between flickers (sec)

% generate stimulus

rcycles = 6;
% number of white/black circle pairs

tcycles = 12;
% number of white/black angular segment pairs

xysize = rect(4);
% divide by 2 if there is a memory problem

xylim = 2*pi*rcycles;

[x,y] = meshgrid(-xylim:2*xylim/(xysize-1):xylim, -xylim:2*xylim/(xysize-1):xylim);

th=atan2(y,x);

r=sqrt(x.^2+y.^2);

checks = (1+sign(sin(th*tcycles)+eps) .* sign(sin(r)))/2 + check_index;

circle = r <= xylim;

checks = circle .* checks + bg_index * ~circle;

SCREEN(w,'PutImage', checks, ...

[rect(3)/2-rect(4)/2, 0, rect(3)/2+rect(4)/2, rect(4)]);

kdown=1;

while(kdown), kdown=kbCheck; end

% animation loop

flick_time = GetSecs;

while (~kdown)
% exit when key is pressed

if GetSecs > flick_time

flick_time = flick_time + flick_dur;

clut(check_index+(1:2),:) = flipud(clut(check_index+(1:2),:));

SCREEN(w,'SetClut', clut);

end

kdown=kbCheck;

end

SCREEN(w,'Close');

The most complicated part of this program is the math used to generate the stimulus pattern. The image checks that is created contains three values, one corresponding to the background color, and one each for the black and white checkers. This script can be modified to animate the checkerboard for retinotopy stimuli, e.g. the example programs exprings.m and rothf.m.

6 of 8

