
Part 4 – Advanced Topics 
 
This part will include several topics that have bearing on making successful experiments.  
We will start by building another experiment. This time we will a psychophysical 
staircase in order to measure thresholds. First, we will use a standard staircase. 
Psychophysical staircase methods are very useful, because they give you a relatively 
efficient method to estimate the threshold of your subjects in a certain task. You will not 
waste a lot of trials exploring parts of parameter space far away from the threshold, 
because the threshold will converge on the domain of interest, around the subject’s 
threshold. Notice that you might not get a full psychometric curve this way. For example, 
you might not get any information about the level at which saturation occurs or the 
curvature of the psychometric curve around the point at which performance starts to rise. 
You might not even get any information about the slope of your psychometric curve. If 
all these things are important in your analysis of the behavior, you might want to use the 
method of constant stimuli in order to estimate your threshold. Alternatively, you might 
want to run several different psychophysical staircases, converging on different levels of 
performance.  
 
The experiment we will run as an example is a target detection experiment. In this case, 
the targets will be red circles. In each trial, the subject will view the screen and will need 
to determine whether a red circle appeared among the green circles and red squares 
surrounding it. The time of presentation then changes from trial to trial according to the 
subject’s performance. Let’s start by charting the flow-chart of this experiment:  
 

Determine whether to show targets on the left or on the right in this block of trials 
 

Determine subjects name 
 

{repeat the following as long as there aren’t enough reversals } 
 

Determine whether to show a target this trial 
 

Show stimulus 
 

Get response 
 

Record data about the trial as you go (you’ll see what that means soon) 
 

If target was shown, determine the duration of the presentation in the next trial according 
to the subject response  

 
{end of trial} 

 
Analyze the data and determine the threshold 

 



 
We will see as we go along that here too, we will want to make functions that will take 
care of different parts of the experiment. Let’s start by looking at the main script: 
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%detectMain.m  
% 
%Runs the detection experiment. Target is a red circle among green circles 
%and red squares. The staircase parameter is the duration of presentation.  
% 
%8/26/2007 ASR wrote it.  
  
%Start by removing anything you had left over in the memory: 
clear all; close all; 
%Set DebugLevel to 3: 
Screen('Preference', 'VisualDebuglevel', 3); 
  
%Get the params of the experiment (this also opens the display): 
params = getDetectParams; 
  
%Initialize the struct where data will be recorded:  
history = makeHistory(params);  
  
%Start some local variables used to control the staircase: 
nTrials=0;  
reversals=0; 
  
%Trial loop. This time the number of trials is determined by the occurence 
%of reversals:  
while reversals<params.nReversals 
    nTrials=nTrials+1;   
    history=doTrialDetect(params, history, nTrials); 
    reversals=sum(history.isReversal); 
end 
  
%Save data (using save):  
  
now=fix(clock);  
%File name includes the subject id and the time of the end of the 
%experiment: 
fileName=[params.subjectID,'_',num2str(now(2)),num2str(now(3)),num2str(now(1)),'_',num2str(now(4)),num2str(now(5))]; 
save(fileName,'history', 'params'); 
  
% close display window 
Screen('CloseAll'); 
ShowCursor; 
 
 

  



This should look more or less familiar to you. The logic is the same as in the face detection 
experiment. Initialization of the parameters occurs in a function of its own. Then, there is a main 
trial loop which calls a function which executes the details of the trial itself. Notice that the data is 
stored in a struct called “history” which is then saved (in line 37). This saves the variables  
“history” and “params” into a .mat file. These files can then be read (only!) by matlab. This simply 
creates in the workspace the variables that existed in the workspace when “save” was invoked.  
 
Next Let’s look at the function that gets the parameters:  
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function params=getDetectParams 
  
%function params=getDetectParams 
% 
%Creates parameters and intitializes the display for the detection experiment 
% 
%8/27/2007 ASR made it 
  
%Experimenter defined params: 
  
params.stimulusSize=50; %pixels 
params.startDuration=1; 
params.nBeforeReversal=3; %3-> ~80% success 2->~70% success 1->~50% ssuccess 
params.stairCaseDecrements = 0.1; 
params.screenNum = 0;  
params.fixationSize = 20; % in pixels 
params.ITI = 1; %seconds  
params.ISI=0.03; %seconds 
  
params.beep=sin(1:0.5:100); 
  
  
%User defined params: 
  
params.testSide = questdlg('Do you want to test on right(R) or Left(L)?',... 
    'Test Side','R','L', 'R'); 
if params.testSide == 'R' 
    params.isLeft=0; 
elseif params.testSide == 'L' 
    params.isLeft=1; 
else 
    disp('Error 1. Sorry, response about test side is unrecognized'); 
end 
  
nReversals = inputdlg('How many reversals do you want before stopping?'); 
  
params.nReversals=str2num(nReversals{1}); 
  
subjectID= inputdlg('What is the subject ID?'); 
  
params.subjectID=subjectID{1}; 
  
%Initialize display params and open the display: 
  
[params.black params.wPtr params.rect] = getDisplay (params.screenNum); 
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This function is again divided into experimenter params, user params and here also screen 
parameters, initialized by the function getDisplay:  
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function [black wPtr rect] = getDisplay (screenNum) 
  
%function [wPtr rect] = getDisplay 
% 
%opens the display defined by the input <screenNum>, returns the size of 
%the screen (in pixels!) and the pointer to that screen.   
  
[wPtr,rect]=Screen('OpenWindow',screenNum); 
HideCursor; 
black=BlackIndex(wPtr); 
Screen('FillRect',wPtr,black); 
 
   

  
 
 

 
This is a rather generic function. In fact, it was very slightly adapted from the equivalent function 
in the face adaptation experiment.  
 
Next Let’s look at what happens within a trial:  
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function history=doTrialDetect(params,history,nTrials) 
  
%function history=doTrialDetect(params,history,nTrials) 
% 
%Executes the trial of the detection experiment. Receives as input, 
%<params>, a struct with various parameters,  
%<history>, a struct with the history of the experiment so far, this same 
%struct is then updated as the function proceeds and is the output of the 
%function. <nTrials> is simply a counter that tells us what trial we are 
%at. 
  
%Put up the fixation: 
rectWidth=params.rect(3); 
rectHeight=params.rect(4); 
  
fixationRect=[rectWidth/2-params.fixationSize/2 rectHeight/2-
params.fixationSize/2 ... 
    rectWidth/2+params.fixationSize/2 rectHeight/2+params.fixationSize/2]; 
  
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
Screen('Flip', params.wPtr); 
  
WaitSecs (params.ITI); 
  



25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
 

%Determine whether to show a target in this trial and record as you go: 
  
isTarget=round(rand); 
history.isTarget=[history.isTarget isTarget]; 
  
makeStim(params,isTarget) 
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
sound(params.beep); 
showTime=Screen('Flip', params.wPtr); 
  
while GetSecs<showTime+history.dur(nTrials) 
    ; 
end 
  
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
Screen('Flip', params.wPtr); 
sound(params.beep) 
  
thisCorrect=getResponse(isTarget); 
history.correct=[history.correct thisCorrect]; 
  
if thisCorrect 
    if history.nUp(nTrials) >= params.nBeforeReversal 
        history.isReversal = [history.isReversal 1]; 
        history.nUp = [history.nUp 0]; 
        nextDur=history.dur(nTrials)-params.stairCaseDecrements; 
  
    else 
  
        history.isReversal = [history.isReversal 0]; 
        nextDur = history.dur(nTrials); 
        history.nUp=[history.nUp history.nUp(nTrials)+1]; 
  
    end 
  
  
  
else 
  
    history.nUp = [history.nUp 0]; 
    nextDur=history.dur(nTrials)+params.stairCaseDecrements; 
    history.isReversal = [history.isReversal 0]; 
  
end 
  
history.dur=[history.dur nextDur]; 
  
 
 

Notice one neat thing about the function definition. This function has as its output one of its 
inputs. This way we can update the struct that will eventually hold all the data about the 
experiment, as we go.  Lines 46-68 are the lines that determine the progression of the staircase. 
Note that in this case the staircase is updated whether there is a target present or not. When 
designing staircase experiments, you may want to have the staircase updated only when a target 
is present. Lines 50 and 66 are the lines in which the staircase parameter is changed. Sometimes 
you may want to have several sizes of decrements. So that in the beginning of the staircase you 



converge more rapidly and towards the end, you converge in smaller steps, sampling the area of 
the threshold more thoroughly. 
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function makeStim(params,isTarget) 
  
%function makeStim(params,isTarget) 
% 
%This function makes the stimulus for the detection experiment. <params> is 
%the struct with the params. <isTarget> is a variable whos value will be 1 
%if there is a target in this trial.  
%The stimulus is hard-coded rather unwisely into the size of the display 
%used.  
%Screen('FillOval') and Screen('FillRect') are used in order to make the 
%stimuli themselves.  
  
  
heightUnit=64; 
lengthUnit=64; 
stim_loc=zeros(10,4); 
  
%Stimuli on the left side of the screen: 
stim_loc(1,:)=[1*lengthUnit 5.5*heightUnit 2*lengthUnit 6.5*heightUnit]; 
stim_loc(2,:)=[3*lengthUnit 2.5*heightUnit 4*lengthUnit 3.5*heightUnit]; 
stim_loc(3,:)=[3*lengthUnit 7.5*heightUnit 4*lengthUnit 8.5*heightUnit]; 
stim_loc(4,:)=[6*lengthUnit 1.5*heightUnit 7*lengthUnit 2.5*heightUnit]; 
stim_loc(5,:)=[6*lengthUnit 9.5*heightUnit 7*lengthUnit 10.5*heightUnit]; 
%Stimuli on the right side of the screen: 
stim_loc(6,:)=[9*lengthUnit 9.5*heightUnit 10*lengthUnit 10.5*heightUnit]; 
stim_loc(7,:)=[9*lengthUnit 1.5*heightUnit 10*lengthUnit 2.5*heightUnit]; 
stim_loc(8,:)=[12*lengthUnit 7.5*heightUnit 13*lengthUnit 8.5*heightUnit]; 
stim_loc(9,:)=[12*lengthUnit 2.5*heightUnit 13*lengthUnit 3.5*heightUnit]; 
stim_loc(10,:)=[14*lengthUnit 5.5*heightUnit 15*lengthUnit 6.5*heightUnit]; 
  
for i=1:10 
    isCircle=rand; 
    if isCircle>0.5 
        Screen('FillOval', params.wPtr , [0 255 0], stim_loc(i,:)); 
    else 
        Screen('FillRect', params.wPtr , [255 0 0], stim_loc(i,:)); 
    end 
end 
  
if params.isLeft && isTarget 
    whichLeft=ceil(rand*5); 
  
    Screen('FillOval', params.wPtr , [255 0 0], stim_loc(whichLeft,:)); 
     
elseif ~params.isLeft && isTarget  
     
    whichRight=ceil(rand*5)+5; 
  
    Screen('FillOval', params.wPtr , [255 0 0], stim_loc(whichRight,:)) 
end; 

     
 



Notice that the stimulus is coded in terms of a certain display. To fit it to your own display, try 
playing with the heightUnit and lengthUnit variables. If we are lucky, you may be able to fit the 
stimuli nicely enough into your display by only changing these variables. Otherwise, try to change 
the stimulus array, so that it fits symmetrically around the fixation point. Bonus points to the 
participant who finds a way to make this code portable across different displays. Note that this 
only makes the stimulus. Screen (‘Flip’) is not called from this script but rather from the doTrial 
script that calls this function.  
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function history=makeHistory (params) 
  
history.dur=[params.startDuration];  
history.isTarget=[]; 
history.nUp=[0]; 
history.isReversal=[]; 
history.correct=[]; 
  

 
 

This simpy initializes the history struct. We need do that because doTrial assumes that these 
variables already exist in the struct. The staircase parameter is initialized to its intial value, set by 
the experimenter. Additionally, the nUp variable, which counts how many correct trials have 
occurred, in order to update the staircase, is initialized to 0, so that it can be evaluated in the 
doTrial function. They’ll end up having one component more than the other variables in “history”.   
 
 
 

Using Quest 
 
The quest algorithm is a very efficient way to conduct experiments using psychophysical 
staircases. At each point in the experiment, it calculates the maximum likelihood estimate 
of the threshold, given the data collected so far in the experiment and the prior we had on 
the threshold going into the experiment. Then, it proposes the intensity of the staircase 
parameter, for which a trial would result in the maximal information on the value of the 
threshold. Details exist in a paper by Watson and Pelli from 1983, to be found on the 
website.  
One major disadvantage of the Quest algorithm is that it requires input on a log scale. 
This means that you will have to perform some transformations on your staircase 
parameter and eventually also on your data. Nicely enough, you don’t have to change 
everything in your scripts in order to change your experiment to use the quest algorithm.  
Let’s look at what the main script looks like now:  
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%detectMainQ.m  
% 
%Minimal changes introduced to the detection experiment, using the quest algorithm 
%in order to determine the threshold.  
% 
%8/27/2007 ASR wrote it.  
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%Start by removing anything you had left over in the memory: 
clear all; close all; 
%Set DebugLevel to 3: 
Screen('Preference', 'VisualDebuglevel', 3); 
  
%Get the params of the experiment (this also opens the display): 
params = getDetectParamsQ; 
  
%Initialize the struct where data will be recorded:  
history = makeHistoryQ(params);  
  
%Trial loop. This time the number of trials is determined in advance 
  
for nTrials=1:params.totalTrials 
     
    history=doTrialDetectQ(params, history, nTrials); 
     
end 
  
%Save data (using save):  
  
now=fix(clock);  
%File name includes the subject id and the time of the end of the 
%experiment: 
fileName=['withQuest', 
params.subjectID,'_',num2str(now(2)),num2str(now(3)),num2str(now(1)),'_',num2str(now(4)),num2str(now(5))]; 
save(fileName,'history', 'params'); 
  
% close display window 
Screen('CloseAll'); 
ShowCursor; 
 
 

 
One obvious change is in that lines 21-25 now have a for loop instead of the while loop that 
existed there in the earlier version. Quest gives us not only an estimate of the value of the 
threshold, but also the error on the estimate. So - Quest can be set up to run until it reaches an 
estimate of the threshold with a specific size of the confidence interval around it. Then, a while 
loop should be used.  
Other than that, pretty much everything is the same. 
 
So far, it doesn’t look like we changed a lot. Let’s look at the doTrial function. There are 
some more substantial changes there: 
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function history=doTrialDetectQ(params,history,nTrials) 
  
%function history=doTrialDetect(params,history,nTrials) 
% 
%Executes the trial of the detection experiment (with Quest). Receives as 
input, 
%<params>, a struct with various parameters,  
%<history>, a struct with the history of the experiment so far, this same 
%struct is then updated as the function proceeds and is the output of the 
%function. <nTrials> is simply a counter that tells us what trial we are 
%at. 
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%Put up the fixation: 
rectWidth=params.rect(3); 
rectHeight=params.rect(4); 
  
fixationRect=[rectWidth/2-params.fixationSize/2 rectHeight/2-
params.fixationSize/2 ... 
    rectWidth/2+params.fixationSize/2 rectHeight/2+params.fixationSize/2]; 
  
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
Screen('Flip', params.wPtr); 
  
WaitSecs (params.ITI); 
  
%Determine whether to show a target in this trial and record as you go: 
  
isTarget=round(rand); 
history.isTarget=[history.isTarget isTarget]; 
  
trialTheta=QuestQuantile(history.q);     
dur=params.maxDur*10^trialTheta; 
tDur=min(dur,params.maxDur); 
  
makeStimQ(params,isTarget) 
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
sound(params.beep); 
showTime=Screen('Flip', params.wPtr); 
  
while GetSecs<showTime+tDur 
    ; 
end 
  
Screen('FillRect',params.wPtr, [255 255 255], fixationRect); 
Screen('Flip', params.wPtr); 
sound(params.beep) 
  
  
thisCorrect=getResponseQ(isTarget); 
history.correct=[history.correct thisCorrect]; 
history.dur=[history.dur tDur]; 
history.q=QuestUpdate(history.q,log10(tDur/params.maxDur),thisCorrect); 
  

 
 

Differences start to become apparent in lines 31-33. QuestQuantile is a function that receives as 
an input a quest struct (we’ll see what that is soon) and gives as an output an estimate of the 
staircase parameter given the data stored in the quest struct. In this case, the staircase 
parameter is not the duration, but log10 (duration/maximal duration). This is the transformation I 
was warning you about before. In cases like duration (which can, in principal, stretch on forever) 
you don’t need to set a maximal value, but when you are using other physical parameters of your 
stimulus as the staircase parameter, such as contrast or difference in angle, there is a natural 
maximum which you should be careful not to pass. This little procedure makes sure that you 
never give the stimulus presentation functions a value of the stimulus which cannot be produced. 
In order to get back the duration for this trial, we apply the opposite transformation (in line 32), 
then we make sure that the duration in this trial does not surpass a predefined maximal duration 
(line 33). Everything between line 28 and line 51 is the same as it was in the previous experiment, 



except that we have totally removed everything that has anything to do with the staircase. 
However, nothing has changed in the way in which the stimulus is presented and the responses 
collected. Then, line 52 updates the quest struct with the result of this trial.  
 
Let’s look at the changes that are introduce when using this algorithm to the parameter 
and history initialization:  
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function params=getDetectParamsQ 
  
%function params=getDetectParams 
% 
%Creates parameters and intitializes the display for the detection experiment 
% 
%8/27/2007 ASR made it 
  
%Experimenter defined params: 
  
params.stimulusSize=50; %pixels 
params.startDuration=1; 
  
%for the quest algorithm: 
params.startVariance=0.2; 
params.maxDur = 2;  
params.pThreshold=0.82; %0.82 is equivalent to a 3 up 1 down standard staircase 
% 
  
params.screenNum = 0;  
params.fixationSize = 20; % in pixels 
params.ITI = 1; %seconds  
params.ISI=0.03; %seconds 
  
params.totalTrials=40; %Rather standard for using quest (!) 
     
params.beep=sin(1:0.5:100); 
  
  
%User defined params: 
  
params.testSide = questdlg('Do you want to test on right(R) or Left(L)?',... 
    'Test Side','R','L', 'R'); 
if params.testSide == 'R' 
    params.isLeft=0; 
elseif params.testSide == 'L' 
    params.isLeft=1; 
else 
    disp('Error 1. Sorry, response about test side is unrecognized'); 
end 
  
subjectID= inputdlg('What is the subject ID?'); 
  
params.subjectID=subjectID{1}; 
  
%Initialize display params and open the display: 
  
[params.black params.wPtr params.rect] = getDisplayQ (params.screenNum); 
  



 

 
 

Major changes are in lines 14-17. We have introduced some parameters that are required for 
running Quest and we have omitted some variables that are no longer needed, pertaining to the 
staircase.  
 
  
Finally, here is the intialization of the history struct. It includes the initialization of the q 
struct which is stored as part of the history struct:  
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function params=getDetectParamsQ 
  
function history=makeHistoryQ(params) 
  
%function history=makeHistoryQ(params) 
% 
%This function actually changed a lot. Notice that we are initializing the 
%quest struct in this script. The quest struct will then be part of the the 
%history struct - serve both as input as output to the doTrial function.  
% 
%8/27/2007 ASR made it.  
  
history.dur=[params.startDuration];  
history.isTarget=[]; 
history.correct=[]; 
  
%Initialize the quest struct and tack it on:  
  
tGuess=log10(params.startDuration/params.maxDur); 
tGuessSd=params.startVariance; 
  
beta=3.5;delta=0.01;gamma=0.5; 
history.q=QuestCreate(tGuess,tGuessSd,params.pThreshold,beta,delta,gamma); 
history.q.normalizePdf=1; 
 

 
 

We no longer need to keep track of the reversals or of how many trials ‘up’ we had so far. 
Instead, line 23 calls QuestCreate, which makes a quest struct. The input is our guess of the 
initial value of the staircase parameter (computed in line 19, from our initial guess of the duration), 
the standard deviation of this guess (in essence, how much weight we want to put on our prior 
beliefs about the parameter we are measuring). beta delta and gamma are parameters of the 
psychophysical function. These values are reasonable in a 2afc. Setting history.q.normalizePdf to 
1 is important, but I don’t really know why.  
 
Notice that the quest struct is saved as part of the history struct. So, we can analyze the 
data contained in that struct (the intensity of the staircase parameter at each trial, for 
example) from that.  

File I/O 
 



So far, we have seen use of the ‘save’ function in order to save variables into a .mat file. 
However, Matlab is also capable of more flexible forms of file I/O than that.  
Let’s start by looking at a simple example:  
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%Simple example of File IO with fprintf and fscanf 
  
fid = fopen ('data.txt', 'w'); 
  
A=magic(5); 
  
fprintf(fid,'%2.2f \t %2.2f \t %2.2f \t %2.2f \t %2.2f \n', A) 
  
clear all 
  
fid = fopen ('data.txt', 'r'); 
  
B=fscanf(fid,'%g %g %g %g %g \n', [5 5]) 
  

Line 3 opens the file and creates a pointer to the file, ‘fid’. Line 5 creates a variable – A is a magic 
matrix (a matrix in which the sum of the rows, columns and diagonal are all equal). Line 7 prints 
the matrix A into the file defined by ‘fid’, according to the formatting string in the middle. This 
formatting string simply says: print the contents of the matrix A as tab separated floating point 
numbers with 2 digits on either side of the decimal point, break line every 5 components of the 
matrix. In lines 11-13, we simply retrieve back the matrix from the file.  
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%Adding a header: 
  
fid = fopen ('data.txt', 'w'); 
  
A=magic(5); 
fprintf(fid,'%s \n','This is the header'); 
fprintf(fid,'%2.2f \t %2.2f \t %2.2f \t %2.2f \t %2.2f \n', A) 
  
clear all 
  
fid = fopen ('data.txt', 'r'); 
header=fscanf(fid ,'%s \n', 4) 
B=fscanf(fid,'%g %g %g %g %g \n', [5 5]) 
  

This example includes putting a header into the file and reading the file in, header separately from 
data.   

Monitor Characterization: The final stages in setting up 
a visual stimulus 
 
Here are the main things to think about before assuming that the visual stimulus you 
programmed is going to appear on the screen as you wish it to do. 
 



These issues include calibration (measuring the relationship between gun values and the 
light emitted by the display) and various other issues. 
 
The following table is a summary of the issues we are going to address in this chapter. 
 
 time Space luminance color 
time Missing frames 

 
Phosphor 
persistence 

Protect your screen 
resolution from lab 
assistants 
 
Record your 
display settings 
and your viewing 
distance 

Warming up 
 
Slow temporal 
changes 
 
Quantization errors 

Warming up 
 
Slow temporal 
changes 

space  Pixels not square Stationarity 
 
Power drain 

Stationarity 
 
Power drain 

luminance   Variation between 
monitors  
 
Gamma correction 

Chromatic 
variance for 
low/high gun 
values 

color    Variation between 
monitors  
 
Gun drain 

 
 Always calibrate with the conditions as much as possible like the experiment as you can 
manage, same computer, same monitor, same screen resolution etc. etc. 
 
 
 

Timing issues 
 

1. Missing frames.  
If you are putting up a series of images in quick succession (for example 1 flip for every monitor 
refresh) it’s important to make sure that drawing the offscreen images isn’t taking too long. If the 
offscreen drawing takes too long then you may be missing refreshes or frames. This means that 
the program will be taking longer (and the stimulus will be moving more slowly, or present for 
longer) than you specified in the code. The way to check this is to record the times that the flips 
happen and make sure they match the frame rate of the monitor (as specified in the monitor 
control panel). If you are missing refreshes there are two main solutions to the problem (1) Try 
lowering the refresh rate of the monitor in the control panels to give you a little more time for each 
flip. (2) Try to do as much computational work as possible before you have to start quickly 
throwing up flips (e.g. if you are putting up a series of face images, load them all into memory 
beforehand rather than loading them from disk which is slow).   
 

2. Phosphor persistence.  



This is the phenomenon whereby even if you ask Psychtoolbox to only flash a gun for a single 
frame, that gun will still admit some energy after the frame is over. This is a particular issue for 
LCD and videoprojectors since these devices use relatively slow phosphors in comparison to 
good old fashioned CRT monitors. The issue of phosphor persistence is often an important issue 
for experiments where you are flashing up a stimulus briefly – imagine you have a 60Hz monitor 
and you are measuring how long a stimulus needs to be presented to be visible. When the 
stimulus is theoretically only up for a single frame (16.67ms) it is in reality presented for longer 
then that if it isn’t immediately masked by some other stimulus. Of course this effect is most 
significant when a stimulus is only up for a very small number of frames. Another case where this 
is important is when you want to create a moving or flickering stimulus. The slow decline of the 
phosphors can result in a moving dot seeming to “streak” across the screen. For moving dot 
stimuli it is much better to use a CRT monitor if you can find one. 
 

Space 
 

1. Pixels are not square (isotropic) 
The pixels in monitors are not perfectly square. So if you want a perfectly square stimulus you 
need to calculate the length and width of each pixel. The best way to do this is simply to measure 
the extent of the screen’s width and height (remember there’s often a black rim around the edge 
of the display which shouldn’t be counted) and divide that by the number of pixels. You can then 
try to adjust the monitor to make the pixels more square, or modify the code for your stimulus to 
compensate for the pixels not being perfectly square. 
 

2. Calculating visual angle 
Generally visual stimuli are expressed in terms of visual angle – I.e. the size of the visual stimulus 

as subtended on the retina. This is because for 
most visual tasks it is the size of the image on 
the retina that is important rather than the size 
of the image on the screen.  
 
To calculate the visual angle subtended by a 
stimulus involves two stages. (Make sure you 
use the same units, e.g. cm for both stages). 
 

1) Calculate the width of a single 
pixel in cm. 
 
(i) Measure the width and height of the screen 
(there is usually a black rim, don’t measure 
that) in cm 
 

(ii) Find out the number of pixels for that monitor horizontally and vertically 
 
width of single pix in cm=width screen in cm/number of horizontal pixels (call this pixH) 
height single pixel in cm=height screen in cm/number of vertical pixels (call this pixV) 
 
 It’s possible that your pixels aren’t square. It may be that you don’t care. If you do, then you 
might wantto adjust the settings on your monitor to make the pixels squarer. If your pixels still 

theoretical

time

actual

time

theoretical

time

actual

time



aren’t square then you may have to have different values for the number of pixels per degree in 
the horizontal and vertical directions. If the pixels are reasonably square you can average vertical 
and horizontal values together to give you a single value (pix) 
 
(iii) Measure the viewing distance of your subject (from the middle of their two eyes) to the center 
of the monitor in cm. (call this viewD) 
  
2) Calculate the visual angle subtended by a single pixel 
degperpix=atan(pix/viewD) 
  
It’s often also useful to calculate the number of pixels within 1 degree of visual angle.  
pixperdeg= 1/degperpix 
 

 
Here’s a program you can use to automatically calculate pixperdeg and degperpix 
>params.res=[1024 768] 
>params.sz=[30 24]; 
>params.vdist=57; 
>[pixperdeg, degperpix]=VisAng(params) 
Note that there are two values for pixperdeg and degperpix – the horizontal and the vertical 
values. If they are reasonably similar and your experiment doesn’t depend critically on the 
stimulus being perfectly scaled along horizontal and vertical dimensions then you can simply 
average the two values of pixperdeg and the two values of degperpix to get an approximation of 
the visual angle subtended by each pixel 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

function [pixperdeg, degperpix]=VisAng(params)  
% function [pixperdeg, degperpix]=VisAng(params)  
%  
%       Takes as input a structure containing:  
% struct.res - the resolution of the monitor e.g. struct.res=[1024 768] 
% struct.sz - the size of the monitor width then height  
%     (needs to match the order you listed struct.res)  
%     e.g. struct.sz=[30 24] 
% struct.vdist - the viewing distance 
%     e.g. struct.vdist=57; 
%     Note that struct.vdist and struct.sz should be in the same  
%     units (cm or inches) 
%  
%   Calculates the visual angle subtended by a single pixel  
% Returns the pixels per degree  
% and its reciprocal - the degrees per pixel (in degrees, not radians)  
%  
% written by IF 7/2000  
  
  
degperpix=2*((atan(params.sz./(2*params.vdist))).*(180/pi))./params.res;  
pixperdeg=1./degperpix;  
 

 
  

Luminance  
 
 



1. Different monitors vary a lot in their relationship between gun 
value and luminance 
This is true even of two monitors of the same brand. The monitor output for a given gun value 
may also vary depending on what computer you are using to drive it. If your experiment depends 
in any way on the luminance of the stimuli then you need to think carefully about your choice of 
monitors. Either you need to calibrate your monitors, so each monitor is displaying the same 
luminance value, or for experiments where this is less of a concern you don’t want to run 
everyone from condition A on monitor 1 and everyone from condition B on monitor 2. You also 
don’t want to swop monitors half way through the experiment if you can possibly help it.  
 
 

2. Gamma Correction: The relationship between gun value and 
luminance is nonlinear and different for each gun 
 

Up until now you have 
expressed image intensity in 
terms of gun values. But you 
should be aware that 
monitors vary a surprising 
amount in how these gun 
values translate into actual 
luminance or chromaticity 
values, and the relationship 
is not linear. Here I show 
how luminance is related to 
the gun value for the red, 
green and blue guns, and for 
all three guns on with an 
equal value (black line).  
 
One way of thinking about 
this is that doubling the gun 
value does not result in a 
doubling of the luminance. In 

the example shown here the gun value of 75 results in an image that is about 42 cd/m2, while a 
gun value of 150 results in an image that is about 109 cd/m2.  Another way of thinking about this 
is that gun value 100 results in an image that is about 39 cd/m2 higher in luminance than gun 
value 50. But gun value 200 results in an image that is about 51 cd/m2 higher in luminance than 
gun value 150.  
 
If you are using any stimuli that vary continuously 
in luminance, like Gabors or gratings, you will need 
to calibrate your monitor. Otherwise your stimulus 
will not actually be a grating (or whatever it is that 
it is meant to be). In the figure here, the black 
curves represent a true sinusoid. The gray curves 
represent how that sinusoid would be represented 
on the screen if you simply sent gun values to a 
typical monitor without calibrating. Notice how the 
bright parts of the sinusoid have gotten much 
narrower, and the dark parts of the sinusoid have 
gotten much broader. This is because the gamma 
curve relating gun value to luminance is much 
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steeper when the luminance is high.   
 
A typical set of gamma correction measurement will look something like this: 
 
GunValue red Y  green Y  blue Y 
  0  0  0  0 
  28  4.4    5.3    .2 
  57  11.7    14.3    5.7 
  85  20.1    25.1    9.6 
 113  29.5    37.4    13.9 
 142  40.2    51.5    18.8 
 170  51.2   66.3    23.8 
 198  63.0    82.0    29.0 
 227  75.7    99.4    34.6 
 255  88.6   116.9    40.3 
 
 
Rather than measuring the luminance output for every gun value we tend to fit these data using a 
gamma function of the form: 
 

 I=αgγ+β 
 
Where I is the intensity of the gun (or guns if you are calibrating for grayscale with all thres guns 
on at an equal gun value), and g is the gun value.  
 

3. Stationarity: The relationship between gun value and 
luminance/color actually changes over the spatial extent of the 
monitor 
 
The luminance and color of a stimulus will depend on where it is on the monitor so you should 
always calibrate the region of the monitor that will actually be used to present the stimuli. If you 
are running an experiment where contrast is critical (e.g. comparing a contrast discrimination task 
where the stimulus is presented in different locations of the monitor) then it is worth measuring 
the relationship between gun value and luminance for the different locations, and making sure the 
monitor is reasonably homogenous over space. If not you may need different calibration tables for 
different locations.  

 

4. Power drain – the 
intensity of a pixel 
may depend on the 
extent to which 
neighboring pixels 
are also being 
driven 
Note that the amount of 
power drain tends to be 
worse between pixels on 

vs

A

vs
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the same horizontal dimension then for pixels that are aligned vertically (this is certainly true for a 
CRT monitor, I don’t know if LCD monitors have a similar issue). This can be an important issue if 
you are comparing (for example) contrast discrimination thresholds for vertical and horizontal 
gratings. More mutual power drain along the horizontal dimension might mean that your 
horizontal gratings are actually slightly lower contrast. Good monitors shouldn’t suffer too badly 
from this problem, but it’s still worth checking. The following would be sensible ways of checking 
for power drain. The dotted red line represents the part of the screen that the photometer is 
measuring. Make sure the test patch is big enough to cover the whole region measured by your 
photometer. 
 
In (A) you check whether the luminance output of a bright patch depends on how much more of 
the screen is also being driven. You want the measured luminance of the central bright patch to 
remain constant. If not, then you have a power drain problem. This will be a real nightmare if your 
stimuli vary in a way that will affect power drain. If they don’t then the best work around is to 
calibrate using calibration patches that are as similar as possible to the stimuli you will use in your 
experiment. (B) is specifically designed to check whether power drain differs depending on 
whether stimuli are oriented horizontally or spatially. If you did not see any evidence for power 
drain with test A you should be OK, but if you are comparing vertical and horizontal gratings it 
might still be worth double checking using B. Note that the lines have to be small compared to the 
aperture of the photometer or you will get slightly different values depending on how many lines 
are fitting into the apertures. You really want the lines to be 1 pixel in width/height. 
 
 

5. Monitors take time to warm up 
When calibrating a monitor or running an experiment you should turn on the monitor at least 5 
minutes before the actual experiment begins (often experiments take 5 minutes to get started so 
this isn’t something you have to worry a lot about). If the experiment depends heavily on 
luminance then you might want to measure the luminance of your monitor every minute after it’s 
been started in the morning and measure how long it is before your monitor is stable.  
 
 

6. Temporal stability: The relationship between gun value and 
luminance/chromaticity will change slowly over time 
When you are running an experiment you should, before the experiment begins 
1) ALWAYS tape over the buttons that allow you to change monitor settings and add a warning to 
people not to change these without consulting you. 
2) Write down the exact settings in the monitor control panel (resolution, bit setting etc. And put a 
note on the computer warning people not to change those settings without consulting you. 
 
It is amazing how often a new lab assistant will change these settings without telling anyone. This 
quickly leads to a very bad lab atmosphere especially when the monitor concerned belongs to a 
graduate student who is trying to finish up their thesis. 
 
Even without someone fiddling with the controls, monitors still change gradually over time, so you 
should recalibrate periodically. If your experiment depends critically on contrast/color then 
recalibrating once a months should be fine. Otherwise you should probably recalibrate every 
couple of months, and certainly when you start a new experiment. 
 
7. Quantization errors.  
As you have learned, on most monitors the guns only take a certain number of discrete levels, 
generally 8 bits (256 different levels). When you display an image, you will generally provide a 
matrix that similarly contains integers between 0 and 255. If you send in non-integers you need to 



bear in mind that the gun value will simply be rounded to the nearest integer – sending in the gun 
value 145.3 will simply give you a gun value of 145. So be wary of this when calculating (for 
example) the rms contrast of a stimulus, or when setting the background to be the mean contrast 
of the stimulus.  
 
For fine contrast discrimination tasks you may sometimes need to produce more discrete levels 
than 256. There are a variety of ways to do it, which won’t be discussed here.  

Color  
 
A color space is an abstract mathematical model 
describing how colors can be represented. Typically, 
because we have three cones, color spaces are 
represented in terms of three axes (since more are 
unnecessary).  
Examples of color spaces include: 
  
1. Cone space – color and intensity is represented in 
terms of the relative and absolute firing rate of human 
LM and S cones. This color space represents cone 
outputs, and tends to be mainly used by vision 
scientists. 
2. Opponent color space – This contains three 
axes – a luminance axis, a red-green axis and a blue-
yellow axis. This is again a color space that tends to be 
used by vision scientists. In this case the color space is 
thought to represent color processing in the later parts 
of the retina and the cortex.  
3. RGB – color can be represented in terms of red, 
green and blue intensity 
4. HSV – this represents color in terms of hue, 
saturation and brightness 
5. CIE color – This is one of the earliest color spaces. 
It has the axis Y which represents luminance, X which 
represents redness, y which represents greenness and 
z which represents blueness (z=1-(x+y). CIE also uses 
the vectors X (X=Yx/y) and Z (Yz/y).  
 

1. Different monitors vary in their relationship between gun value and 
chromaticity 
Similar issues apply to color as to luminance – while equal gun values will tend to look gray, in 
fact that exact shade of gray will differ considerably across monitors. If your experiment depends 
in any way on the color of stimuli then you need to think carefully about your choice of monitors. 
Either you need to calibrate your 
monitors, so each monitor is displaying 
the same color values, or for 
experiments where this is less of a 
concern you don’t want to run 
everyone from condition A on monitor 1 
and everyone from condition B on 
monitor 2.  



When you look at the wavelengths emitted by a typical CRT monitor you can see that (as would 
be expected) the blue gun mostly emits short wavelengths, the green gun emits longer 
wavelengths and the red gun emits mostly longer wavelengths.  
With a high quality spectrometer you can measure the energy as a function of wavelength, 
usually in 10-30nm bins. These are becoming surprisingly cheap – the GregtagMacbeth Eye One 
photometer will run you about $250 (they used to run about $7-12k). Cheaper or older 
colormeters will give you the chromaticity of each phosphor in some sort of 3d color space.   
 

2. Gun drain/power stealing 
For some monitors there is power stealing across the three guns. I.e. The luminance output of the 
red gun is smaller when the green gun is also on at full intensity. The best way to test for this is to 
measure the output of each of the three guns independently at maximum intensity (gun value of 
255) and then measure the output of the three guns on together for a stimulus of the same size. 
The overall luminance should be the sum of the maximum luminance of the three individual guns. 
In my experience CRT monitors show a lot of power stealing (up to 10% drop in luminance), so 
this is something you do need to compensate for when calibrating. If you are using a 
monochromatic stimulus (e.g. all guns on at equal gun value) then just make sure you use 
gamma correction tables based on all three guns being on at equal intensities (don’t just sum the 
gamma tables for the individual guns, since you will underestimate the luminance of your stimuli). 
If you stimuli are varying in color (and aren’t just red, green and blue) then compensating for 
power stealing gets a little more complicated. We’ll go into that in more detail later since full 
chromatic calibration is mostly for the brave.  
 

3. The chromaticity of a monitor is only likely to be stable for 
intermediate luminance values.  
Over a wide range of luminances if you have a fixed ratio of red, green and blue guns, then the 
stimulus will stay roughly the same in chromaticity – e.g. when red, green and blue guns have the 
same value the stimulus will be close to gray. This tends to fall apart for very low gun values (of 
less than 50), and to a lesser extent for very high gun values of 225 or more. So if your stimuli are 
falling into that range, then you want to be wary of slight shifts in chromaticity for high and low 
luminance stimuli. This is probably slightly due to slight inaccuracies in the fit of the gamma 
function for very low gamma values, but is mostly due to the chromaticity of the guns actually 
changing slightly when they are on at very low or very high intensities. 
 
A typical set of chromaticity values for a monitor might look like this in CIE space: 
For red gun 
GunValue x  y  z 
   0   0.5695     0.1406     0.2899 
   28   0.5544     0.0899     0.3557 
   57   0.5182    0.2493     0.2325 
   85   0.5220     0.1741     0.3039 
  113   0.5722     0.2164     0.2114 
  142   0.5025     0.2117     0.2858 
  170   0.5891     0.2011     0.2099 
  198   0.5784     0.1498     0.2717 
  227   0.5089     0.1526     0.3384 
  255   0.5367     0.1813     0.2820 
 
For a green gun 
GunValue x  y  z 
0      0.2407     0.4564     0.3029 
28   0.2472     0.4828      0.2700 



57       0.3736     0.3916     0.2348 
85       0.3028     0.4270     0.2702 
113   0.2391     0.4369     0.3240 
142       0.2979     0.3893     0.3127 
170       0.2436     0.3840     0.3724 
198       0.2325     0.4966     0.2709 
227       0.2869     0.4506     0.2625 
255       0.3477     0.4177     0.2346 
 
 

Calibration 
The goal is of course to be able to measure the luminance and chromaticity of a monitor, and 
then used those measured values to specify the exact color and luminance you want the monitor 
to produce. Here’s code that will let you do that. 
 

Grayscale calibration 
If you don’t care about the chromaticity of your stimulus then calibration is very simple. You 
simply find the best fitting gamma function that describes the transformation from luminance to 
intensity, when all the guns are on at equal value: 
 I=αgγ+β 
 
Then you simply need to calculate the inverse of that gamma function, which is of course: 
g=((I-β)/α)1/γ 
 
so if we want to find the gun values for a linear set of intensity values we simply 
plug in a linear set of gun values from the minimum possible, to the maximum 
possible and calculate the corresponding gun value.  
Suppose 
>calib,gv=[0 28 57 85 113 142 170 198 227 255]; 
>calib.measuredgray= [0.3000 0.5000 4 10 20 35 70 110 140 180]; 
>calib.graygamma.alpha=0.0002141; 
>calib.graygamma.beta=0.0023; 
>calib.graygamma.gamma=2.4666; 
 
We can calculate a linear 
desired set of luminance values 
that spans the full range 
encompassed by the monitors: 
>desiredlum=linspace(min(calib.m
easuredgray), ... 
    max(calib.measuredgray), 256); 
 
We can then calculate the inverse gamma table 
– i.e. the gun values you need to step linearly 
from the minimum luminance to the maximum 
luminance.  
 
calib.inversegray=((desiredlum-calib.graygamma.beta) ... 
    ./calib.graygamma.alpha) ... 
    .^(1./calib.graygamma.gamma); 
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We can then associate our inverse gamma function with a psychtoolbox window so as to create a 
linearized window. To do this we first need to create a 256 rows x 3 columns matrix 
>gtable=[calib.inversegray; calib.inversegray; 
calib.inversegray]'; 
 
Note that because you can’t actually get a luminance of 0 the inverse gamma table starts just 
above 0. You then need to scale the gtable so it goes between 0-1 instead of from 0-255.  
>calib.graytable=scaleif(gtable, 0, 1) 
 
Once you have done this, then there is a nice linear relationship between gun value and 
luminance. If you put in normalized gun value of 1 it will give you maxlum (180), a normalized gun 
value of 0 will give you minlum, and a normalized gun value of 0.5 it will give you a luminance 
value that is 90.15  
(maxlum-minlum)/2+minlum. 
 

Color calibration using spectral data and calculating LMS values 
 
Let’s say you want to produce a particular response in L, M and S cones. The spectral output of 
the monitor will be a weighted sum of the three phosphors, so the overall light at each wavelength 
will be: 
 
T = SI – where T is the overall spectral output of the monitor 
I=[Ir ; Ig ; Ib]/(maxIr + maxIg  + maxIb) – this is a 1 x 3 matrix containing the relative luminance of 
each gun 
S=[Sr Sg Sb]  - where S is a n x 3 matrix where n is the number of samples of wavelength 
 
We can then go on to calculate cone outputs as follows: 
C= [L M S]T  – this describes the spectral absorption spectrum of L, M and S cones. 
O=CSI - describes the output of the cones for a given set of luminances for each of the cone 
types 
 
M=CS is called the calibration matrix of the monitor and should be a three by three matrix 
[0.2732  0,9922  0.1466 
0.1034   0.9971  0.2123 
0.0117   0.1047  1.0] 
 
To calculate the luminance needed on each gun to achieve a desired output for each of the three 
cones we just work our way backwards 
 
I=M-1O 
 
Where O is the desired output for each of the three cone types.  
 
This technique is pretty standard and doesn’t take account of gun drain (the luminance when all 
three guns are on full being less that would be predicted by each gun being on separately at full) 
 


