
FAQ - Miscellaneous tips for improved performance and timing

Q: How can i improve the drawing performance and timing of my PTB-3 code?

A: There are many measures that one can combine in order to increase reliabilty of presentation timing and drawing performance. Many

of them are not neccessary on modern hardware unless you create very demanding and complex stimuli. However, they may be useful for

old hardware and it is always a good idea to write your code in a portable and efficient way.

SYST EM SET U P:

On MacOS/X do not run the Mac OS9 Classic emulation environment! It will kill any kind of precise timing behaviour!

During a study exit all unneeded applications, applets and other gizmos.

Disable virus scanners and other automatic periodic processes while running your study!

Install sufficient amounts of RAM in your machine. Use of the hard drives as virtual memory will cause non-deterministic timing

if your RAM is insufficient for your application.

Make sure that the energy saving options of your machine do not slow down the processor and other subsystems to save power or

battery life. Especially important for laptops on battery power.

It may help to disable or disconnect Bluetooth, WLAN/Wifi and network connectors and to unload CD or DVD disk drives.

Don't run your study at excessive screen resolutions, choose something reasonable for your purpose. Higher resolutions take up

more precious VRAM graphics memory and increase the time for clearing the framebuffer, drawing your stim and for post-

processing operations.

MAT LAB:

Try to run the study in matlab -nojvm mode --> Cuts down all the periodic processing done by the Matlab graphical user interface

and disables the heavy-weight and ressource-hungry Java virtual machine, reduces memory load and cpu load. This may also

help to resolve "out of memory" errors on older Matlab releases (caused by Java) and crashes and hangs related to Quicktime

movie playback with some movie formats (caused by bugs in Matlabs Java and Apples Quicktime or bad interactions between

them). This doesn't apply if you need GetChar and friends - they depend on Java, at least on OS-X.

If you can't or don't want run in matlab -nojvm mode, try to minimize Matlabs user interface processing: Close unneccessary

Matlab windows and views. E.g., the view window for the contents of your current working directory gets updated every couple of

seconds when shown - expensive, can lead to additional periodic timing jitter!

Read the documentation of Matlab about optimizing your code for efficient use of memory and speed.

Use Matlabs mlint help mlint tool and its profiler help profile: They hint you to performance bottlenecks and other problems in

your code.

Categories PageIndex RecentChanges RecentlyCommented Login/Register Search: Your hostname is 149.142.83.230

Psychtoolbox Wiki : FaqPerformanceTuning1

DU AL D I SPLAY OPER AT I ON:

Running two displays simultaneously requires more VRAM memory and computational ressources in your gfx-card, plus some additional

management overhead in the graphics driver. This can cause lower graphics performance and therefore lead to missed stimulus onset

deadlines when running complex stimuli on high resolution, high refresh rate displays, especially when using older mobile graphics

chips with a low amount of local VRAM. To minimize these effects, try the following:

Use dual display mode only if you need two displays for your study, e.g., stereo display, haploscopes and such. Disable the 2nd

display during experiment sessions if you don't need it. Its fine to run dual display studies where PTB has full control over both

displays, i.e. one onscreen window completely spanning and covering both displays, or two separate onscreen windows, each of

them completely covering each one of the displays. PTB is optimized for this usage case, taking control over ressource

management for such a setup.

If you can't or don't want to disable the 2nd display, although you don't need it for your study, e.g., Laptops where internal panel

can't be disabled, try the following tricks:

Switch the displays into mirror mode or clone mode with same resolution, color depths and refresh rate: This may or

may not help reducing load, depending on the design of your graphics hardware, driver and operating system.

Open a 2nd onscreen window on the display which you don't need. The window has the sole purpose of granting PTB

control of the unneeded display, blocking other applications and the GUI from updating it.

If none of both is possible or helpful, try to minimize any graphics updates on the display with your desktop: Minimize

or close unneeded applications, disable the "seconds" display and indicators on the clock, calm down other little

applets.

PR OGR AM M I N G:

Psychtoolbox output to the Matlab window

The amount of verbosity of PTB can be controlled via the Screen('Preference', 'Verbosity', level); command. Use low settings for level to

minimize output to the Matlab window: Reduced clutter and saved time for printing. Use high (or default) settings during development of

your code and during first test runs to make sure that you get informed by PTB of possible issues with your setup or code!

Settings for the level parameter and their meaning:

1. No output at all.

2. Only severe error messages.

3. Errors and warnings.

4. Additional information, e.g., startup output when opening an onscreen window.

5. Even more information and hints.

6. Very verbose output, mostly useful for debugging PTB itself. Usually not what you want.

Preloading of functions:

Matlab M-Files and especially MEX files do have some additional delay on first invokation (Matlab needs to find and load them, compile

or link them, they need to perform some internal initialization). This can be significant, e.g., multiple hundred milliseconds. For time

critical studies, use each function once before your trial loop to "preload" the function before first use.

M-Functions are faster than M-Scripts:

Add the function keyword to the top of your experiment script after initial testing and debugging. Matlab precompiles functions into some

optimized code at load time, so they execute faster than scripts (M-Files without function keyword).

If the executed m-file is a script then Matlab reparses and interprets each statement again every time the script is executed and no

optimizations are applied. It is as if you type commands into the matlab window, just typing very fast.

Functions, however, are precompiled and optimized by Matlab's JIT compiler at load time, and during execution, so they are faster. One

problem of dynamic optimization at runtime ("hot spot optimization") is that loops in your code may execute slower during the first few

iterations than in the remaining iterations, because they are optimized during runtime. Because of this, it is recommended to dry-run your

code for a few trials before starting your actual experiment. This is beautiful for most applications, but can create headaches for

benchmarking and deterministic timing. The other problem is the lack of documentation and control about these features. The strategies

apparently change with each new matlab release, as new optimization features are added under the hood.

This JIT mechanism is what gives Matlab a speed advantage over Octave for poorly written code, whereas there's basically no difference

for well written code in most cases. For maximum performance and most deterministic timing it is best to optimize your code yourself as

described in Mathworks documentation, so the JIT has to do less guesswork and runtime optimization and you'll get better

performance/timing from the start. And of course use ptb's timing functions wisely to immunize your code against such behaviours as

much as possible.

Other M-code optimizations: Good coding practices

With some googling, quite a bit can be found on good coding practices. I have pasted a few links that seem good below.

It is suggested you start by reading MCFEX: Writing Fast MATLAB Code .

See Peter Acklam's MATLAB array manipulation tips and tricks for many techniques for writing vectorized code.

The below links seem to have some useful information and tips too (add any links that you found useful and do not simply duplicate

information already introduced in other links):

Speed MATLAB by optimizing memory access

For tips on measuring performance of scripts, see MCFEX: MATLAB Performance Measurement . This file also contains a section A

Catalog of Noise, which introduces you to warming up cold code and to sources of potential timing variability.

But don't forget, If your code works well and timing is good, don't spend hours optimizing it--the payoff for your work would be almost nil

and you might even introduce unforseen bugs. In my view, this statement doesn't hold if your new to MATLAB and coding practices that

work well. Experiment and learn! do take your time to optimize, following the pointers from the links above. That way you wil make good

practice your own and you will learn to think in good code (vectorized code is easier on your working memory also).

Realtime scheduling:

For time critical code, use the Priority(prio) command to raise Matlab to realtime-priority mode. Select the prio value via

prio=MaxPriority(...) to get the highest suitable priority for your needs in a portable, operating system independent way. Don't forget to

disable realtime mode via Priority(0) at the end of your script!

Optimal Code structure:

If you experience missed frame presentation deadlines, try to structure your code inside your animation/trial loop as follows:

1. All Screen drawing commands, e.g., Screen('DrawDots',...) , Screen('DrawText', ...), Screen('DrawTexture', ...).

2. The command Screen('DrawingFinished', win[, clearmode]); where clearmode is the same optional flag that you'll optionally

pass to the Screen('Flip', win); command. This will tell PTB that stimulus drawing for this frame is finished, so it can perform a

couple of optimizations, e.g., perform potential stimulus post-processing operations immediately and in parallel to the execution

of your non-graphics Matlab code.

3. All commands not related to graphics, e.g., sound output, keyboard/mouse/response box queries, Matlab code, ...

4. The vbl=Screen('Flip', win [,when]); command to trigger stimulus onset. Providing a when timestamp is recommended. It

allows PTB to further optimize drawing when it knows, when exactly the stimulus should be shown. It also allows for higher

reliability of the built-in frame skip detector and it allows for very robust stimulus onset timing. On most hardware and operating

systems, the returned vbl timestamp is a highly accurate and robust timestamp of the time your stimulus was flipped onto the

display, unaffected by all the timing noise that is invariably present in most operating systems.

While use of Screen('Flip', ...) with the vbl and when arguments is nearly always recommended for studies where you care about frame

accurate timing, use of the Screen('DrawingFinished',...) command is optional and not needed for many studies. Its worth a try if you

have very complex and demanding stimuli, tight deadlines at high framerates or old and slow hardware: It doesn't hurt to use it, but it

doesn't help in all cases either.

DriftWaitDemo.m in the PsychDemos folder of PTB is a good example of how to provide timed onset of stimuli.

Reduced VRAM usage on graphics hardware with very small VRAM

Try if adding a Screen('Preference', 'ConserveVRAM', x); with x=1 or 2 or 3 or 4 to the top of your script makes things better or worse.

Reduced VRAM pressure, but higher load for system RAM and bus. Under these settings, PTB doesn't cache textures in VRAM anymore

but only keeps them in system memory.

Speeding up specific PTB drawing commands

Screen('OpenWindow'): Full scene smoothing/anti-aliasing via settings of the optional multisample parameter of > 0 is an

expensive operation, both in terms of memory consumption and drawing speed! Higher multisample levels are more expensive. If

you only need to draw anti-aliased textures, dots and lines, use the smoothing modes of Screen('DrawDots') and

Screen('DrawLines') and the bilinear texture filtering of Screen('DrawTexture') instead. Only use full scene anti-aliasing for

more complex or combined stimuli.

Screen('Flip'): If you have an animation loop where your stimulus is constantly and fully overdrawn by following stimuli and you

don't use alpha-blending, then you can skip clearing of the framebuffer after each Screen('Flip', win, when, clearmode, ...)

command by setting the optional clearmode flag to a value of 2. This will prevent PTB from clearing the framebuffer to

background color after each flip. That way you can save 1-2 milliseconds per frame on old and slow graphics hardware, maybe

more on onboard graphics chips. On modern hardware, the gain will be only fractions of a millisecond, if measurable at all.

clearmode=1 is the slowest mode of operation, unless you have the Psychtoolbox imaging pipeline enabled, there it is for free.

This clearmode is only beneficial for incremental updating of very complex stimuli, where saved redraw time may outweight the

increased cost of this mode.

Screen('OpenOffscreenWindow'): Use only if you need to draw to an offscreen surface for precomputation of your stimuli. Most

stimuli can be drawn on-the-fly thanks to modern fast graphics hardware and the double-buffered drawing model of PTB-3.

Matlab image matrices are best drawn via the Screen('MakeTexture') and Screen('DrawTexture') commands. Use Offscreen

windows only if you need to draw into them with Screen 2D drawing commands or MOGL 3D drawing commands. Try to restrict

the size of an Offscreen window to the minimum needed size via the optional rect parameter - Most stimuli don't cover the whole

screen after all. Switching between drawing into different Offscreen windows is expensive, unless you use the PTB imaging

pipeline. Therefore try to group drawing commands which draw into the same Offscreen window, thereby minimizing the

number of switches between Offscreen windows.

Screen('DrawText'): This is fast and low-quality on MS-Windows and beautiful but slow on OS/X. If you need to draw the same

texts repeatedly in very timing critical loops, you may want to draw the text into an offscreen window, thereby creating a text slide

for later presentation via Screen('DrawTexture'). Switching text properties like size, style and especially font can be an expensive

operation on some operating systems. Group text drawing commands which share common text properties together, thereby

minimizing changes of settings.

Screen('PutImage'): This is a slow command. Use the combo of Screen('MakeTexture') and Screen('DrawTexture') instead if

possible. See DriftDemo.m for a simple example.

Screen('DrawTexture'): If you draw textures without any scaling, subpixel scrolling or subpixel shifts (srcRect and dstRect of

[Source] [History] 2009-07-06 00:13:38 Owner: MarioKleiner+

same size and positioned at integral pixel positions) and without rotation (standard upright drawing), you can disable bilinear

texture filtering by explicitely setting the optional flag filtermode of Screen('DrawTexture',......,filtermode) to zero. This will

reduce the amount of data being processed by a factor of four. On modern graphics hardware, speed-gain may be minimal, but

older hardware or onboard graphics chips may benefit. N.b.: If you didn't know about subpixel scrolling, play around with

DriftDemo2.m or DriftDemo3.m and their parameters. They allow for drifting gratings that drift at a speed below the motion

threshold, without any need to precompute grating movies or textures.

Screen('FillPoly'): Filling convex polygons is faster than filling concave or self intersecting polygons. This will only matter for

large polygons with many points.

Screen('DrawDots') and Screen('DrawLines'): Drawing dots or lines with a single common color and size is the fastest.

Drawing dots and lines with a color that is individual to each specific dot or line is slower. Drawing dots or lines of individual

diameter or width for each dot or line is significantly slower. Drawing dots or lines of big diameter or width or with point- or line

smoothing enabled may be slower on old graphics hardware or onboard graphics chips, but won't matter very much on modern

hardware.

TEST S:

The following scripts may be useful to assess display timing on your setup:

The VBLSyncTest script is a good way to assess and learn about display timing. It has many mandatory parameters so read help

VBLSyncTest carefully.

CheckFrameTiming is another test script.

PerceptualVBLSyncTest is a visual test to assess proper synchronization of stimulus onset to the monitor refresh cycle.

...to be continued, stay tuned...

Valid XHTML 1.0 Transitional :: Valid CSS :: Powered by WikkaWiki

