PART 2 - PTB Core Commands

The core functionality of PsychToolbox is a set of powerful scripts to show stimuli and collect responses. In this section we will cover visual display, auditory presentation, timing issues and response collection.

Before we begin, two important pointers (you might want to make use of the more command when viewing the help – this was explained in PART 1):

i) The Psychophysics Toolbox contains a number of components:

help psychtoolbox

ii) The Psychophysics Toolbox includes a number of demo programs and tests. For a list, see help psyschdemos and help psychtests. For example, to get some information about your computer and its graphics speed:

screentest

Try out a number of the other tests. They are usually very informative. The demos are useful for copying bits of code if you are trying to do something similar. To get an idea of what sorts of things you can do, click on the PsychToolboxDemos option (after typing help psychtoolbox) and pick a few fun scripts (check the list, as the PC version has different versions), e.g.,

DriftDemo, MovieDemo, PhaseDistortDemo, SpriteDemo, KbDemo

iii) If you have not yet done so please type PsychJavaTrouble at the command line to add the Java library scripts.

Now let’s move to Part2 by using cd to change into the appropriate directory:

e.g., pwd

% will show you where you are now

e.g., (cd W:\NITP\Lab2\Part2)

While going through this tutorial it’s imperative that you look at the actual Matlab code in order to understand how scripts/functions work. e.g.,

PracticeKeyPresses

% to run (you might get an error

% because of a PC bug here)

edit PracticeKeyPresses
% to look into the script

help PracticeKeyPresses
% to get its help comments/usage
VISUAL DISPLAY

The core of PTB display is to open a window, assign it to a pointer (which points to a screen), modify what’s in it and then send it to the screen. This is the basis of all images, animations etc.

To do this we use the Screen command. You can see it work by running the DarkScreen.m script.

DarkScreen % will flash a dark screen briefly

If you look inside (either by “edit DarkScreen” OR “type DarkScreen”) you’ll see the sample usage. Let’s look at it closer:

i) The first argument of Screen is ‘OpenWindow’. This is one of the sub-functions that Screen can perform. To see what other functions Screen can do try ‘help Screen’. But to see what the usage of ‘OpenWindow’ is you’ll need to use a question mark (?).

Screen OpenWindow?

Also check out the following… they’ll be useful

Screen CloseAll?

help sca

Screen Close?

If you ever need to kill and experiment early or have a frozen screen you will need to first press ‘cntrl’ and the key ‘C’ simultaneously (this kills Matlab processes), then press return to clear the command line (which you may not be able to see still because it’s hidden behind your display), then type ‘sca’ and press return. NOTE: This does not work quite right on the PC for some display commands. In some cases if you press cntrl-shift-tab you’ll be able to get to process control and kill Matlab that way.
ii) The second argument, screenNum, is a digit pointing to the screen that you want to send the output to. It is 0 (set in the first line), which means main screen. Other indices would be appropriate if your computer is connected to multiple display devices.

Screen('screens') % should return 0

Screen screens? % will tell you about the command usage

iii) The third argument is color for the screen (it is 0, or black, here). There are two main color modes that you will probably use, 8-bit color and 32-bit color. 8-bit color means that the color information for each pixel is stored in an 8-bit (i.e. one byte) number, that is, a number ranging from 0 to 255. 32-bit color is actually usually uses only 24 bits (i.e. three bytes), one 8-bit number for the red, green and blue color channels. These numbers, each ranging between 0 and 255, together form an RGB triplet. The way that 8-bit color works is through a color lookup table (CLUT). The CLUT is a 256x3 matrix, each row containing an RGB triplet. When you display a color to the screen in 8-bit mode, the number you are writing is a reference to the CLUT entry. Drawing something with color 0 will draw it using the first entry of the CLUT, and so on. You can also use the RGB triplet instead of 0 (e.g., [0 0 0]).
a=Screen('LoadCLUT',0);

a(1,:)
% will show you the first entry of the CLUT

%% IF YOU TEST THE FOLLOWING LINE YOU’LL HAVE TO MANUALLY CLEAR THE SCREEN (CNTRL-C, RETURN, THEN TYPE sca and hit RETURN) %%

wPtr = Screen(0,'OpenWindow',[0 0 0]) % triplet usage

Change the 0 to something else (e.g., 0 255 0) in DarkScreen – it won’t change the back ground! Why? We’ll get to it on the next page!

iv) The fourth argument is rect, which specifies position (and thus size). It is a set of rectangular coordinates [x1 y1 x2 y2] specifying the upper left (x1, y1) and lower right (x2, y2) coordinates of a rectangle. The origin (0, 0) of the screen is in the upper left, so y increases from the top to the bottom of the screen, and x increases from left to right. When copying parts of windows, displaying images, and so on, you will always give the position on the screen in terms of a rect.

You can also get the size of your screen using ‘WindowSize’ (the whole screen by default):
[width, height]=Screen('WindowSize', 0);
Then, you could compute the coordinates of the center of the screen:

xcenter = width/2; ycenter = height/2

It is useful to know the coordinates of the center of the screen since you will often be drawing stimuli relative to this point. Notice that in DarkScreen.m the size was hard-coded to be 50 x 50 x 1250 x 1024.

v) The fifth argument is clrdepth. You can learn about it using the help for OpenWindow!

So, how is the DarkScreen working? (look inside at code) It sets up the window. Gets the index for black and white colors using BlackIndex and WhiteIndex (look these up using help). Then it creates a Rectangle at the pointer (wPtr) and assigns a color to it. Finally it “flips” it – which means send to screen buffer (i.e., displays it, while synchronizing to the screen’s refresh rate). This is the core usage of Screen to draw an image to screen. Notice that at the end of the script we “CLOSE” the screen and reveal the cursor. This is the full protocol for displaying items to screen.

Also note that this code actually shows two rectangles (first black and then white). The color for the shapes is set separately from the color for the background. This is why changing color in the original ‘OpenWindow’ call does not affect what you see. The “rectangles” fill the whole background. If you comment out the line starting with ‘black’ and change the color in the Screen call to [0 255 0] – the background should now change green because you’ve eliminated the color assignment and PTB toolbox color defaults are to use the last-called color!

USES OF SCREEN

 Here are a few things to try by modifying DarkScreen and rerunning… note that when you change DarkScreen, do not DELETE lines of code. Generally a bad idea! Instead, just comment out (using %) the lines you don’t want and add a new line immediately following!

AUDIO PRESENTATION

Sometimes you’ll want to play sound instead of or in addition to showing visual displays. There are built in function to do this, “sound” in Matlab and also “wavplay” (use “help” to learn what these are). In PTB3 the sounddriver is called PsychPortAudio. It is superior to other sound functions and is recommended. It (and wavplay) can be used asynchronously. This means that you can call the function to begin playing a sound, and then control will be returned immediately to the program so you can do other things while the sound is playing. See “help PsychPortAudio” for an overview.

You can change the pitch of your sound by changing f. The way musical tones work is that every time you double the frequency, the tone increases by one octave. Most musical instruments are tuned to a reference A note of 440 Hz.

Vectors played by the sound function must be in the range of –1 to 1. Since our sine wave oscillates between these extremes, it will be played at the full volume. To decrease the volume, we need to decrease the amplitude of the sine wave.

You will notice that decreasing the amplitude of the sound vector does not make the sound be perceived as half as loud. It is possible to modulate the volume of the sound in time by slowly modulating the amplitude of the signal. For example, if we want to modulate the volume at a frequency of 1 Hz, we could multiply our original sound vector by an appropriate function:

modf = 1; y=y.*(sin(2*pi*modf*t)+1)/2; sound(y,fs);

You can see what this wave looks like by plotting it:

plot(t,y)

You can try out the stereo (the machines in the lab are mono, though):

y1=sin(2*pi*f*t).*(sin(2*pi*modf*t)+1)/2; % channel 1

y2=sin(2*pi*f*t).*(sin(2*pi*modf*t+pi)+1)/2; % channel 2

sound([y1;y2]',fs) % one channel per row = stereo

Some other waveforms you might want to try are square waves:

y=sign(y); plot(y(1:2000)); sound(y,fs)

and sawtooth waves:

y=mod(1:fs*d,fs/f)*f/fs; plot(y(1:2000)); sound(y,fs)

TIMING & STIMULUS CONTROL

TIMING

Before dealing with response collection, let’s briefly consider a few key issues in stimulus control. The first of these is timing. Timing becomes when, for instance, the time to load a stimulus is longer than the time for which it is supposed to be presented!

Two helpful tools for controlling timing are the functions GetSecs and WaitSecs(x). The former returns the number of seconds that have passed since last reboot. The latter will pause for x seconds. You can use these in a loop structure to adjust the presentation of your stimuli:

waittime = 2.5;

 % time to wait (in seconds)

start_time = GetSecs;

 % get time stamp

%(e.g., start of a block)

while GetSecs-start_time < waittime; DO SOMETHING; end

This code will DO SOMETHING (e.g., display a stimulus, wait for a response, kill some time if you need to adjust your timing) for 2.5 sec. You can also get an idea of how fast your computer runs using the following:

times=zeros(1,10000);

for i=1:10000; times(i)=GetSecs; end

plot(times)
 % should show a linear increase

plot(diff(times))
% will show the difference between consecutive iterations of loop

The y-axis in the last plot is in seconds. So you can see that though fast, the iterations do take time. This is helpful when timing for instance how long it takes to draw a complicated image or animation. The following script will test the timing on your computer (you can copy and paste directly into Matlab). Press any key once the circles are on screen.
[w,rect] = Screen(0,'OpenWindow',[0 0 0]);

n=500; % number of circles to draw

r=500; % radius of circle

times=zeros(1,n);

x=rand(1,n)*rect(3);

y=rand(1,n)*rect(4);

colors = 256*rand(n,3);

start_time = GetSecs;

for i=1:n

 Screen(w,'FillOval',colors(i,:),[x(i)-r,y(i)-r,x(i)+r,y(i)+r]);

 Screen(w,'Flip');

 times(i) = GetSecs-start_time;

end

Screen(w,'Close')
Now use the plot(diff(times)) command to see the diff(times) measure. What is the average drawing time? You can now make the circle radius bigger (you can decrease n as well to make it go quicker) – does it change the drawing time?

Displaying images is a little more time consuming than drawing objects.

img=imread('martini2.jpg');

[sy sx sz] = size(img);

[w,rect] = Screen(0,'OpenWindow',[0 0 0]);

n=500;
% number of images to draw

times=zeros(1,n);

x=rand(1,n)*rect(3); %on a Mac you can draw outside the screen borders

y=rand(1,n)*rect(4);

%x=rand(1,n)*(rect(3)-sx)+sx/2; % on a PC you can’t

%y=rand(1,n)*(rect(4)-sy)+sy/2;

start_time = GetSecs;

for i=1:n

 Screen('PutImage',w,img,[x(i)-sx/2,y(i)-sy/2,x(i)+sx/2,y(i)+sy/2]);

 Screen('Flip',w);

 times(i) = GetSecs-start_time;

end

Screen(w,'Close')
Now do plot(diff(times),'.'). Notice the distribution of drawing times. How does resizing the image affect the drawing times? Add the lines

sx=sx/2; sy=sy/2;

after the second line of the above code and rerun. Try to double the size instead of halving it.

RESPONSES

RESPONE COLLECTION

There are two components to response collection. One is hardware (setting up the device) and the other is software (registering key presses). Setting up devices was covered in a previous section. Indeed in setting up the experiment one must specify the device that will be used to collect responses (it does not have to be the same one that the experimenter uses to control the main computer). You can use the kind of script that’s present in hid_probe.m to do this.

The main function used to collect responses is KbCheck.m:

[keyIsDown,secs,keyCode] = KbCheck;

keyIsDown is true if any key is pressed. secs is the time of the keypress, and keyCode is an array of all the possible key values. If key number 2 is depressed, then keyCode(2) will be true. Multiple keys can be pressed at once, and keyCode will register them all.

The best way to figure out which key code corresponds to which key is to run the KbDemo program. It outputs the internal code that’s associated with each key-press on a keyboard (the standard device for responses). Upon running this functions and pressing keys you will get responses like:

KbDemo

1 of 4. Testing KbCheck and KbName: press a key to see its number.

Press the escape key to proceed to the next demo.

You pressed key 32 which is 3#

You pressed key 38 which is 9(

You pressed key 37 which is 8*

You pressed key 33 which is 4$ …

This shows the index of the key (in the array keyCode) and its internal code. Notice that number keys are coded with both the digit and the secondary function. To set up response collection, there are at least three steps to consider:

KbCheck is the primary function to collect responses, but there are others. For other PTB functions type help KbCheck (at the bottom you’ll see some related scripts such as KbWait, GetChar and FlushEvents). KbWait is particularly useful if you need insert pauses or a delay on response collection. FlushEvents(‘keyDown’) is good to run after each collected response in order to flush the queue.

You can also get input from devices other than the keyboard. The obvious way is to specify different devices to different variables and specify these in the KbCheck call. Note that we didn’t do that in the above example because we were using the keyboard for response collection (the default of KbCheck).

[keyIsDown,secs,keyCode]=KbCheck(inputDevice);

In some cases there are unique scripts to go with devices. Look up the GetMouse script to see one example. It works much the same way the KbCheck function does, returning the instantaneous state of the mouse. Try modifying the above program to read the mouse input. Note that since GetMouse doesn’t return a secs argument, you’ll have to issue a GetSecs command immediately upon getting a positive click from the mouse.
FINALLY – SAVING YOUR DATA!

You need to save your data as you run your script. Typically you’ll do this by assigning variables of interest into a matrix after each collected response (see examples of this in the demo scripts in Part 3 and 4). Run getResponse to execute the following lines of code:

outVars = []; trialNumber = 1;

fprintf('\npress any key…\n');
FlushEvents('keyDown');

keyIsDown = 0;

startTimer = GetSecs;

while ~keyIsDown

[keyIsDown,secs,keyCode] = KbCheck;

end

Once the script completes type the following to retrieve some info about your response.

secs - startTimer

% this is your response time in sec

keyIsDown

% 1 now b/c a resp has been registered

KbName(find(keyCode)) % should show you which key you pressed

% finally save the response press and time into our matrix variable

outVars(trialNumber,1) = find(keyCode);

outVars(trialNumber,2) = secs-startTimer;

% type outVars to see what you’ve done:

format bank

outVars

% your output will look something like this showing you the

% keyCode associated with your keypress and your RT in seconds

outVars =

 32.00 0.41

Finally – we need to save this info to a text file. Open a file as follows:

subjectID = 'dummy';
logfile=sprintf('%s_data.txt',subjectID);
fprintf('A log of this session will be saved to %s\n',logfile);
fid=fopen(logfile,'a');
if fid<1,
 error('could not open logfile!');
end

write the data to the file:

fprintf(fid,'KEYpress\tRespTime');
fprintf(fid,'\n');
fprintf(fid,'%d\t%0.2f',outVars(trialNumber,:));

and close the file.

fclose(fid);
Open your file to see how the data have been saved.

edit dummy_data.txt

Note that you only need to call the fopen and fclose commands at the outset and at the end of your experiment. The file will remain ‘open’ for writing during the experiment.

ADVANCED: If you really want to be careful – save both a *mat and *txt version of the file (the former can be done using the save command), and include a try-catch statement in your code so that if the script crashes, the opened fid is closed properly.

And voila… you’re ready to code experiments!

When you’re developing your script you might want to keep an eye on BOTH the Matlab command line (watching for errors) and also at the output display (stimuli). Making the display window smaller than your screen will allow you to do this. Adjust rect to make the screen smaller (and move it so it appears in the top-right corner of your screen).

screenNum = 0;

res = [1280 1024];

clrdepth = 32;

[wPtr,rect] = Screen('OpenWindow',screenNum,0,...

[50 50 res(1) res(2)], clrdepth);

DRAWING SHAPES. The Screen function includes a number of different drawing sub-functions, including FillRect, FrameRect, FillOval, FrameOval, all of which take a color and rect argument. Try drawing a few shapes. To do so comment out the first Screen(‘FillRect’…) line (~line 26) of DarkScreen and replace with different parameters, e.g.

Screen('FillRect',wPtr,[128 128 128],[300 300 400 400])

For the frame drawing commands, you can also specify the width and height of the frame lines, and the type of line. Other drawing subfunctions include FillPoly, which draws a filled polygon and requires a list of (x, y) vertices rather than a rect argument, FillArc and FrameArc, which draw curved lines, and DrawLine, which draws a line between two points.

DRAWING TEXT. You can display text with the Screen DrawText subfunction, e.g. Screen('DrawText',wPtr,text,[x],[y],[color]);

Where text is your text string (either in a variable or within single quotes), x and y are the starting positions, and color is an RGB triplet or CLUT index. For instance, add the following to your DarkScreen.m script, preceding the “Flip” command (~line 40).

Screen('TextSize',wPtr,40);

Screen('DrawText',wPtr, 'Hello',200,400,[255 0 255]);

You can change the font, size and style of the text with the TextFont, TextSize and TextStyle sub-functions. These functions need to be called before the text is drawn, and affect only subsequent text. If you want to center the text, you need to first figure out the width in pixels of the text you are about to draw. You can do that with the TextWidth subfunction.

DISPLAYING IMAGES. You can display any image that is contained within a matrix to the screen using the Screen PutImage function. For example, you could generate your own pattern. For instance, put these two lines inplace of Screen(‘PutImage’…) (line 34-35) in DarkScreen.m:

pict = 256*rand(200,200,3);

Screen('PutImage',wPtr,pict);

Or you could load an image from a file using Matlab’s imread function.

pict=imread('martini2.jpg');

Notice the size of pict:

size(pict)

whos pict

There are three entries in the third dimension, corresponding to the RGB values.

By default, Screen putimage centers the image on the screen and uses the default size of the picture. You can force Screen putimage to resize and reposition the image by specifying a destination rect (substitute this line the script you’ve created):

Screen('PutImage',wPtr,pict,[100 100 500 200]);

What happens if you don’t pass all three RGB values, but instead only one of them?

Screen('PutImage',wPtr,pict(:,:,1));

GENERATING PATTERNS. Sometimes you may need to generate images rather than just loading them in. Any image that can be stored in a matrix can be displayed to the screen. For example, here is a sine wave. This is the heart of DarkScreen.m

[x y] = meshgrid(-8*pi:pi/25:8*pi, -8*pi:pi/25:8*pi);

pict = floor(128*(sin(x)+1));

Screen('PutImage',wPtr,pict)

You can also look at the image in a Matlab figure window (outside of the PTB screen):

image(pict); colormap(gray(256));

The Psychophysics Toolbox demo program GratingDemo also gives an example of the creation and display of a grating with a Gaussian envelope (so it fades along its edges).

Checkerboard patterns are easy to make, for example:

pict=sin(x).*sin(y); imagesc(pict);

pict=floor(255*(sign(pict)+1)/2); image(pict);

You might notice that along some edges of the checkers, there is some gray that peeks through. This is because sign(pict) is zero where pict is exactly zero. You can see that with the output of unique(pict), which shows all of the unique entries in the pict matrix. You can fix this by adding eps, a small number:

pict=floor(255*(sign(pict+eps)+1)/2);

imagesc(pict);

The heart of DarkScreen.m just assembles these various commands and draws the image to screen using ‘PutImage’.

[x y]=meshgrid(-8*pi:pi/25:8*pi, -8*pi:pi/25:8*pi);

pict=floor(255*(sign(sin(x).*sin(y)+eps)+1)/2);

xcenter=rect(3)/2; ycenter=rect(4)/2;

rect=[xcenter-100,ycenter-100,xcenter+100,ycenter+100];

Screen('PutImage',wPtr,pict)

Check out Usingcolormaps2.m and Usingcolormaps.m to see another example of drawing in Matlab! Check out FunkyScreen.m to see a very funky screen!

ANIMATIONS – See PTB_animation*.doc for demo animation routines. We don’t have time to go through this but you might find these useful as future templates (parts of this code may be outdated as it was modeled using an older version of PTB).

SOUND BASICS in Matlab

TURN DOWN YOUR SOUND BEFORE STARTING THIS SECTION!!!!!

load handel

sound(y,Fs)

plot(y)		% a plot of the sound waveform

Fs				% sampling frequency

The default sample frequency is 8192 Hz, which means for every second of sound you play, your y vector will have 8192 entries. This way you can time your sound stimulus precisely. CD quality sound is sampled at 44100 Hz.

sound(y(1:8192),8192) plays exactly one second of sound. You can also change the rate of the sound by manipulating this sampling frequency. For example,

sound(y,2*Fs)

sound(y,Fs/2)

You can do a Fourier transform of the vector to get its frequency spectrum.

f=fft(y);

plot(abs(f))

It is easy to create your own basic sounds.

fs=44100;	 % sample frequency (Hz)

d=2;	 % length of sound (seconds);

t=(1:d*fs)/fs; % time (seconds)

f=500;	 % frequency of stimulus (Hz)

y=sin(2*pi*f*t);	 % the auditory stimulus vector

plot(y(1:2000)) % see what the wave looks like

sound(y,fs)	 % plays a 100 Hz pure tone for 2 seconds

y=sin(2*pi*f*t)/2;

sound(y,fs);

You can create a sound with multiple frequencies by adding together components of different frequencies. You just need to make sure that the amplitude of the final waveform is between –1 and 1 (the soundsc function can be used to ensure this).

Here’s a C major chord:

f = [523.25, 659.26, 783.99]; % frequencies of CMaj chord

y=sum(sin(2*pi*f'*t)); y=y/max(y);

plot(y(1:2000)); sound(y,fs)

If you combine two frequencies that are too close together, they will add destructively, and you will get a beating phenomenon. For example:

f = [200 205];

y=sum(sin(2*pi*f'*t)); y=y/max(y);

plot(y(1:10000)); sound(y,fs)

If you have stereo, try playing these frequencies to the different speakers to see if you hear the same phenomenon (this may also depend somewhat on the quality of your sound system):

f = [200 205]; y=sin(2*pi*f'*t); sound(y',fs)

PsychPortAudio – PTB SoundDriver

In PyschToolbox, the sounddriver is known as PsychPortAudio. It’s a power tool that should replace the need to use Matlab’s sound. The principles for creating sounds are the same – but the driver ensures accurate delivery without disturbing other processes such as, for instance, visual presentation. The basic usage of the sounddriver involves three steps.

1. Initialization of sounddriver and audio device:

InitializePsychSound(1);	 % argument (1) is optional and indicates

					 % that we really want low latency playback

Next we create a pointer to initialize the audio output hardware. Here we set how many channels we want. Note that we’re using stereo in this example.

FS=44100; %Hz

nChannels = 2; %stereo

deviceid = -1; %default to auto-selected output

reqlatencyclass = 2; %latency mode 2, aggressive control

pahandle = PsychPortAudio('Open', deviceid, [], reqlatencyclass, FS, nChannels);

Setting any other defaults. Below we are setting the ‘RunMode’ to 1 – which, after playing a sound, leaves the hardware in a ‘ready’ state. This is great for ensure low presentation latency for consecutive presentations of sound (or interleaved stimuli).

PsychPortAudio('RunMode', pahandle, 1);

2. Playback (can be repetitive):

All of the above are set only once – at the start of your experiment typically. To actually present sounds we then load a sound file into the buffer and play it when ready (make sure CORRECT.wav has been loaded into the variable ‘tone’):

PsychPortAudio('FillBuffer', pahandle, [tone tone]');

PsychPortAudio('Start', pahandle, 1, 0, 0);

Notice that we’re copying tone to create two columns and then transposing. We need two rows of sound in order to fill the two channels (stereo!). Now try the following to play the tone in either left or right speaker:

dummytone = zeros(size(tone));

PsychPortAudio('FillBuffer', pahandle, [tone dummytone]');

PsychPortAudio('Start', pahandle, 1, 0, 0);

PsychPortAudio('FillBuffer', pahandle, [dummytone tone]');

PsychPortAudio('Start', pahandle, 1, 0, 0);

LOADING SOUND FILES

In many cases you will already have a sound file made – standardized perhaps – and will want to simply load it and play it. This is fairly straightforward and can be accomplished using wavread.m (check out other scripts as well for other formats, e.g., aviread.m).

e.g.,

[tone,fs]=wavread('CORRECT.WAV');

sound(tone,fs);

plot(tone);	% to see how it looks!

Notice that we recorded the sampling frequency (fs) while reading the file. This ensures that when we play it back – it sounds as it’s supposed to! Try plying the file without the fs variable. The script will assume a default frequency of 8192 Hz – twice that of the recorded sound (check out fs after loading). It’ll sound pretty distorted because the script will be oversampling. To hear this type:

sound(tone); % omit the fs var and thus use default

Notice the other parameters in the call. The first 1 in the second call indicates that we want one repetition of the sound file. Try changing this to a different number.

The other two parameters (0,0) indicate that we don’t want to wait to start playback. There are many options to how you can use PsychPortAudio to play tones. For help on the ‘Start’ sub-function type:

PsychPortAudio Start?

However this driver can be used to do very fun and complex tasks – like scheduling playback – leaving you free to present visual stimuli (for example). To get a summary of the sub-functions see:

PsychPortAudio	 % this will give you a sub-function list

3. Closing of sounddriver and audio device:

At the end of the experiment you will want to close the audio device and the sounddriver. This is fairly straightforward:

PsychPortAudio('Close', pahandle);

DEVICES (THIS WILL PROB NOT WORK PC SET UP BUT WILL WORK FOR YOU on a MAC and is USEFUL TO DO!)

You might have already noticed references to devices in the audio tutorial above. The same holds for visual display. PTB needs to know what hardware you’re using to present your stimuli (and also collect responses!). In the audio tutorial we set device to -1, which is a default (PTB will find the audio device for you). However you can learn about your devices with the following utility scripts:

numDevices=PsychHID('NumDevices');

devices=PsychHID('Devices');

This produces a struct containing all kinds of goodies about the tools you have on your PC. For instance the following will give you device ‘names’:

devices.product	% will give you the names

devices(1).product	% will give you the name for the first device

Check out the help file and the hid_probe.m script to see how this can be used:

PsychHID

PsychHID Devices?

responseDevice = hid_probe;

SYNCHRONIZATION: For accurate display you will need to synchronize stimulus drawing with the refresh cycle of your display. A CRT monitor works by firing a beam of electrons at the screen from a “gun” (color displays have three guns) that scans the entire screen once per refresh cycle. The refresh rate of your monitor, typically 60 or 75 Hz, measures the number of times the screen is redrawn each second. For a 75 Hz refresh rate, the screen is drawn once every 1/75 = 0.0133 s, or 13.3 ms. Although it looks like the entire display is illuminated at once, this is an illusion. Actually, each spot on the screen is illuminated only when the electron gun passes over it—very briefly, after which the illumination decays rapidly. You could measure this with a photodiode and oscilloscope. The LCD screens in projectors and laptops work differently. Most of them are still analog, meaning that the display is drawn in a scanning fashion, so many of the artifacts will be similar to those on a CRT display. The LCD may be a bit more sluggish, that is, when you try to erase something, it may linger on the screen for a bit longer than it would on a CRT display. You may notice this in the animations we do next week if you are using an LCD.

The Psychophysics Toolbox was designed to allow us to avoid such display artifacts. The Screen(‘Waitblanking’) function pauses briefly until the end of the monitor refresh cycle so that we know that stimuli that are drawn thereafter will appear in the next frame. However in PTB3 we use the ‘Flip’ command to display images. This command actually synchronizes stimulus drawing to the screen refresh rate – ensuring accurate timing. See ‘Screen Flip?’ for more info. This command offers great control over display… If you’re having persistent timing issues, look over the TroubleshootingTiming.pdf for PTB’s recommendations.

RESPONSE COLLECTION (CODE IN THIS BOX DOES NOT WORK on PC – BUT THE REST OF THE STEPS WILL WORK ANYHOW…)

[Optional] Device set up. At the outset of the experiment specify which device you are using to collect responses. An example (using hid_probe.m) is below. You don’t have to do this if you’re using the keyboard as your input device (which is the default in KbCheck).

% device for button presses

fprintf('\n\n===============');

fprintf('\nCHOOSE DEVICE FOR SUBJECT RESPONSES:');

fprintf('\n===============\n');

inputDevice = hid_probe;

fprintf('\n\n')

RESPONSE COLLECTION

[Optional] Response specification. You can set which responses are acceptable at the outset of the experiment or online as you collect responses. The following code assigns possible inputs to variable names using KbName.m. KbName will provide you with the Matlab code that’s associated with each key stroke. For instance, type KbName and press return, then press any key to see its KeyCode.

% for instance here is how you would assign the ‘b’ ‘y’ ‘g’ and ‘r’ key presses if the FLAG_MRI

is 1, and ‘,’ and ‘.’ key presses if using keyboard (DON’T RUN THIS)

if FLAG_MRI,

		blue = KbName('b'); yellow = KbName('y'); green = KbName('g'); red = KbName('r');

else % USING KEYBOARD

 LEFT = KbName(','); RIGHT = KbName('.');

end

Response Collection. During the experiment you will need to include a function call or a loop for response collection. Typically you’ll also include checks for timing here as well. The following is a simple response collection script for you try. To run this, copy the entire block of script and copy into your Matlab command window. If this fails – run testResponses at the command line (it contains the exact same lines of code). You may have to change the RESPONSE KEY CODE. See if 44 is correct by typing KbName(‘space’). You will see a fixation. Press the spacebar when the white circle flashes.

[w,rect] = Screen(0,'OpenWindow',[0 0 0]);

ntrials=10; % number of trials

r=50; 	 % radius of circle in pixels

tmin = 1; tmax = 3; % minimum and maximum time between trials

% maximum

rtime = zeros(1,ntrials); times=zeros(1,ntrials);

x0=rect(3)/2; y0=rect(4)/2;

rkey=44; %RESPONSE KEY CODE

for i=1:ntrials

 keyIsDown = 1;

 while(keyIsDown) % first wait until all keys are released

 [keyIsDown,secs,keyCode] = KbCheck;

 end

 % draw fixation point

 Screen(w,'FrameRect',[255 255 255],[x0-3,y0-3,x0+3,y0+3]);

 Screen(w, 'Flip');

 wait_time = rand * (tmax-tmin) + tmin;

 start_time = GetSecs;

 while(~keyCode(rkey))

 if GetSecs-start_time > wait_time

 wait_time = Inf;	 % so as not to repeat this part

	 Screen(w,'FillOval',[255 255 255],[x0-r,y0-r,x0+r,y0+r]);

 Screen(w, 'Flip');

 time0=GetSecs;

 end

 [keyIsDown,secs,keyCode] = KbCheck;

 end

 rtime(i)=secs-time0;

 Screen(w,'FillOval',[0 0 0],[x0-r,y0-r,x0+r,y0+r]);	

end

Screen(w,'Close')

avg_rtime = 1000*mean(rtime)	% mean reaction time in ms

What was your average reaction time (avg_rtime)?

