Electronic Elements and Circuits

Voltage

- Potential Energy from Charge Attraction
\square Separation of Charge results in Stored Energy

Electrical Potential energy is Measured in Volts (V) whose units are Joules/Coulomb
$\square 1 \mathrm{eV}=1.6 \times 10 \mathrm{E}-19$ Joules
\square Voltage is sometimes called, "Electromotive Force" or e.m.f.
\square The notation for charge is Q

UCLA Medical Center	Centerfor
Cosnitive Neuroscience 2	

Current

Electrical Kinetic Energy is called Current
Current is the motion of charge
The Electrical Engineers symbol for current is $i\left(^{*}\right)$.
Current Flows "through" conductors
Current is therefore $d Q / d t$

- The Unit of Current is "Amperes" or amps.

Symbol for a current source:

* Hence, engineers use " j " to denote $\sqrt{-1}$

UCLA
 Medical Center

Center for
Cosnitive Neuroscience

Resistance

Insulators allow little or no current flow
Conductors pass current easily.
\square conductor symbol:

Typical "Resistors" range in values from about
1 Ohm to about 10E6 Ohm (10Megohm)
resistor symbol:

A 1 Ohm resistor allows 1 Ampere of current to flow when 1 Volt is applied across it.

Circuit

Circuits always show the complete path for current
flow

■ Kirchhoff's Laws:
\square KCL: Current through any node adds to zero
■ any two terminal device is a node
\square KVL: Voltage around any loop adds to zero
\square Both laws are an expression of conservation of energy

UCLA Medical Center	Center for Cosnitive Neuroscience ?

Parallel Circuit $=$ Current Divider

KCL says that $i=i_{1}+i_{2}$
$\mathbf{K V L}$ says that $\mathrm{V}_{1}=\mathrm{V}_{2}: \mathrm{Vs}_{\mathrm{s}}=i_{1} \mathrm{R} 1=i_{2} \mathrm{R} 2$
The apparent resistance is: $\mathrm{Vs} /\left(i_{1}+i_{2}\right)$

$$
\begin{aligned}
R_{\|} & =\frac{V_{S}}{i_{1}+i_{2}}=\frac{V_{S}}{\frac{V_{S}}{R 1}+\frac{V_{S}}{R 2}} \\
& =\frac{1}{\frac{1}{R 1}+\frac{1}{R 2}} \\
& =R 1 \cdot R 2 /(R 1+R 2)
\end{aligned}
$$

Capacitor (cont'd)

If charge is applied to one side of the capacitor, equal and opposite charge will move to the other side.
■ This results in a net current "through" the capacitor.

$$
\begin{aligned}
& Q=C V \\
& \frac{d Q}{d t}=i=C \frac{d V}{d t}
\end{aligned}
$$

This appears similar to Ohm's law.

Laplace Transform

\square Note that: $d\left(A e^{s t}\right)=s A e^{s t}$
\square Finding the derivative of a function of the form $A e^{s t}$ is like multiplying by s
■ Finding the integral is like dividing by s
■ Applying the Laplace transform typically reduces differential equations to simple algebra.

UCLA Medical Center	Center for
Cognitive Neuroscience 13	

Capacitors and Laplace

\square Let $V(t)=A e^{s t}$

$$
\frac{d V}{d t}=s A e^{s t}
$$

■Therefore $i=s C A e^{s t}$

$$
\begin{aligned}
\frac{V}{i} & =\frac{A e^{s t}}{s C A e^{s t}} \\
& =\frac{1}{s C .}
\end{aligned}
$$

A capacitor acts like a resistance whose value depends on C and s!

Capacitors and Sinusoids

Let: $V(t)=A \cos (\omega t)$:
For a capacitor:

$$
\begin{aligned}
& i_{C}=C \frac{d v}{d t}=-\omega C A \sin (\omega t) \\
& -\omega C A \sin (\omega t)=\omega C A \cos \left(\omega t-90^{\circ}\right) \\
& \frac{V}{i_{C}}=\frac{A \cos (\omega t)}{\omega C A \cos \left(\omega t-90^{\circ}\right)}=\frac{\cos (\omega t)}{\omega C \cos \left(\omega t-90^{\circ}\right)}
\end{aligned}
$$

A capacitor looks like a resistance whose magnitude goes as $1 / \omega C$
A capacitor introduces a 90° phase difference between current and Voltage.

UCLA Medical Center	Center for Cosnitive Neuroscience 14

Capacitor Demo

$C=\varepsilon_{0} A / D$
Typical Tape Thickness $\sim 5 \mathrm{E}-5 \mathrm{~m}$
$\varepsilon_{0} \approx 8.854 \times 10^{-12} \quad F / m$
UCLA
Medical Center

Impedance

Resistance is the proportionality between constant current and constant Voltage.

$$
V=i R
$$

Impedance is the ratio between time-varying Voltage and time-varying current.

$$
\mathrm{V}=\mathrm{IZ}
$$

Noting that Z, I and \mathbf{V} may be complex values
$\square \mathbf{Z}$ has a magnitude in Ohms, but may also include a phase.

Inductance

Current creates a magnetic field about the conductor

Time-varying Currents create a Time-Varying Field
Time varying Magnetic Fields generate an e.m.f. that induces a time-varying current in conductors
The e.m.f. is proportional the the rate of magnetic field change:

$$
\text { e.m. } f .=k \frac{d B}{d t}
$$

UCLA

Medical Center

Inductors

The magnetic field created by each loop of a coil is coupled to all of the other loops.
■ In general, the magnetic field created by a time-varying current opposes the same current flow in the other coils

- The result is that:

$$
V_{L}=L \frac{d i}{d t}
$$

where is the voltage across the inductor and L is the inductance value (in Henries).

UCLA

Complex Impedance

\square Both Capacitors and Inductors have complex impedance: \mathbf{V} / \mathbf{I} is a complex quantity

- For a Capacitor, $\mathbf{V} / \mathbf{I}=1 / s C$.
- For an Inductor, $\mathbf{V} / \mathbf{I}=s L$.

■ In a circuit, we can replace all inductors and capacitors by their complex impedance:

- The circuits can then be analyzed with KVL and KCL

Inductors

Commercial Inductors are simply coils of wire.

Frequency Characteristics of Inductors

Following the same reasoning as we used for a capacitor. Let: $\quad i=A e^{s t}$, and $s=j \omega$

$$
V=s L A e^{s t}
$$

\square Thus

$$
\begin{aligned}
i_{L} & =A e^{s t} \\
\frac{V_{L}}{i_{L}} & =L \frac{s A e^{s t}}{A e^{s t}} \\
& =s L
\end{aligned}
$$

$$
\text { or: } \begin{aligned}
& i_{L}=\mathfrak{R}\left[A e^{j \omega t}\right]=A \cos (\omega t) \\
& \frac{d\left(i_{L}\right)}{d t}=-\omega A \sin (\omega t) \\
& \frac{V_{L}}{i_{L}}=L \mathfrak{R}\left[\frac{-\omega A \sin (\omega t)}{A \cos (\omega t)}\right] .
\end{aligned}
$$

An inductor behaves like a resistor of magnitude $s L$ that introduces a $+90^{\circ}$ phase shift.

UCLA Medical Center

Center for
Cognitive Neuroscienc

Example

■ This is just a Voltage Divider circuit

$$
\begin{aligned}
v_{\text {out }} & =v_{\text {in }}\left(\frac{1 / s C}{R+1 / s C}\right) \\
\frac{v_{\text {out }}}{v_{\text {in }}} & =\frac{1}{s R C+1}
\end{aligned}
$$

Diode

UCLA	Medical Center	Center for
Cognitive Neuroscience 25		

Amplifiers

Generally: Total power is increased

$$
v_{\text {in }} i_{\text {in }}<v_{\text {out out }} i_{\text {on }}
$$

Amplifiers require an added source of energy

emitter
Transistor

Operational Amplifier

- Ideal Op Amp

\square infinite gain
\square No current flows between +in and -in

\square Real Op Amp

maximum output Voltage \approx the power supply
\square gain $>1 \mathrm{E} 4$
input current $\ll 1 \mu \mathrm{~A}$

On the Op Amp:
$+,+i n, v+$ are used equivalently
$-,-i n, v$ - are used equivalently

Medical Center

Making Signals Bigger

Physiological signals are too small to observe directly
Passive devices (transformer)

Conservation of Energy: $v_{\text {in }} i_{\text {in }}=v_{\text {out }} i_{\text {out }}$

Ground

Ground is any selected node in a circuit
Usually, ground is selected as either one side of the input signal or the power supply.
■ All remaining Voltages are compared to Ground.

UCLA

Datasheet (cont'd)

Datasheet (cont'd)

TL081, TL081A, TL081B, TL082, TL082A, TL082BTL082Y, TL084, TL084A, TLO84B, TL084YJFET-INPUT OPERATIONAL AMPLLFIERSsLoso91E-FEBRUARY 1977-REVISED FEBUUARY 1999						
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger						
		$\begin{array}{c\|} \hline \text { TL08 C } \\ \text { TLLO8 AC } \\ \text { TL08_BC } \end{array}$	TL08.	TL084Q	TLO8. M	UNIT
Supply voltage, $\mathrm{V}_{\text {CC }+ \text { (}}$ see Note 1)		18	18	18	18	v
Suppiy voltage $\mathrm{V}_{\text {CC }}$-(see Note 1)		-18	-18	-18	-18	v
Differential input voltage, V_{10} (see Note 2)		± 30	± 30	± 30	± 30	v
Input voltage, V_{1} (see Notes 1 and 3)		± 15	± 15	± 15	± 15	v
Duration of output short circult (see Note 4)		unlimited	unilimited	unlimited	unimited	
Continuous total power dissipation			See Dissi	pation Rating	Table	
Operating free-air temperature range, T_{A}		0 to 70	-40 to 85	-40 to 125	-55 to 125	${ }^{\circ}$
Storage temperature range, T $_{\text {stg }}$		-6510150	-65 to 150	-65 10150	-65 to 150	${ }^{\circ} \mathrm{C}$
Case temperature tor 60 seconds, TC	FK package				260	${ }^{\circ} \mathrm{C}$
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds	Jor JG package				300	${ }^{\circ} \mathrm{C}$
Lead temperature $1,6 \mathrm{~mm}$ (1/16 inch) from case for 10 seconds	$\begin{array}{\|l\|} \hline \text { D, N, P, or } \\ \text { PW package } \end{array}$	260	260	260		${ }^{\circ}$
+ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between $\mathrm{V}_{\mathrm{CC}}+$ and V CC - 2. Differential voltages are at $\mathbb{N}+$ with respect to $\mathbb{N}-$. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V , whichever is less. 4. The output may be shorted to ground or to either supply. Temperature andior supply voltages must be limited to ensure that the dissipation rating is not exceeded.						
UCLA Medical Center					Center for Cognitive	Neur

Multivibrator

UCLA Medical Center

Inverting Amplifier

In these slides, -in is the Voltage at the inverting input of the op amp (with respect to ground), and + in is the voltage at the non-inverting input.

In this circuit, negative feedback

$$
\begin{aligned}
v_{R 1} & =v_{i n} \\
i_{R 1} & =\frac{v_{i n}}{R 1}
\end{aligned}
$$ is used to ensure that v - and $v+$ are kept equal. In this case, they are kept at ground.

$$
\begin{aligned}
v_{\text {out }} & =-i_{R 1} R 2 \\
& =-R 2 \frac{v_{\text {in }}}{R 1} \\
\frac{v_{\text {out }}}{v_{\text {in }}} & =\frac{-R 2}{R 1}
\end{aligned}
$$

p amp, the current through R2 must equal iR1. Therefore the Voltage across R2 must equal R2* $i \mathrm{R} 1$. This Voltage must therefore be sourced by the output of the op amp:

Inverting Amplifier Equivalent Circuit

In an op amp, $v_{\text {out }}$ is controlled by the difference between $-i n$ and $+i n$. The output Voltage is fed back (negative feedback) to the v-input so that the $(+i n-i n) \approx 0$.

No current flows between + in and -in therefore, in this case, the current through R1 also goes through R2. The energy to supply that current is provided by the op amp (actually from its power supplies).

Notice the direction of the current through R2: when $v_{i n}$ is positive, $v_{\text {out }}$ must be negative.

From the perspective of the input source, the op amp can be modeled as a resistor of value, R1.

UCLA	Medical Center	Center for
Cognitive Neuroscience		

Voltage Follower

At first blush, this very common op amp circuit seems odd. After all, it is clear that if $-i n$ and $+i n$ are equal $v_{\text {out }}=v_{\text {in }}$.

What makes this useful, is that no matter what load $v_{\text {out }}$ is connected to, the op amp ensures that no current flows into the + in input. The Voltage follower isolates the input source from the load driven by $v_{\text {out }}$. This means that the input source is not altered by driving a load. Essentially no current flows out of the input source (which therefore loses no energy).

UCLA Medical Center

Inverting Summing Amplifier

The current through R4 is equal to the sum of the currents through R1, R 2 and R 3 ($K C L$).

Difference Amplifier

A "difference amplifier" amplifies the difference in voltage between to points, $v 1$ and $v 2$, rejecting any Voltage they have in common.
The current through R1, R 1 , is $(v 1-v+) / \mathrm{R} 1$, and is the same as

$$
\text { the current through R2, which is (} v+-v o u t) / \mathrm{R} 2 \text {. }
$$

$$
\begin{aligned}
& \text { the current through R2, which is }(v+-v o u t) / R 2 \text {. } \\
& \text { The Voltage divider at the non-inverting input ensures that: } \quad v_{+}=v_{2}\left(\frac{R_{g}}{R_{2}+R_{g}}\right) \text {. } \\
& \qquad v_{1}-v_{+} \quad v_{+}-v_{o w}
\end{aligned}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{1 / s C}{R}
$$

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{R}{1 / s C}
$$

$$
=\frac{1}{s R C}
$$

$$
=s R C
$$

$$
v_{o}(t)=\frac{1}{R C} \int_{0}^{t} v_{i n}(t) d t+v_{0}(0)
$$

$$
v_{0}(t)=-R C \frac{d v_{i n}(t)}{d t}
$$

$$
\begin{aligned}
& \frac{v_{1}-v_{+}}{R_{1}}=\frac{v_{+}-v_{\text {out }}}{R_{f}} \\
& \frac{v_{1}-v_{2}\left(\frac{R_{g}}{R_{2}+R_{g}}\right)}{R_{1}}=\frac{v_{2}\left(\frac{R_{g}}{R_{2}+R_{g}}\right)-v_{\text {out }}}{R_{f}} \\
& v_{\text {out }}=v_{2} \frac{R_{g}}{R_{2}+R_{g}}+v_{2} \frac{R_{f} R_{g}}{R_{1}\left(R_{2}+R_{g}\right)}-v_{1} \frac{R_{f}}{R_{1}} \\
& =v_{2}\left(\frac{R_{1} R_{g}}{R_{1}\left(R_{2}+R_{g}\right)}+\frac{R_{f} R_{g}}{R_{1}\left(R_{2}+R_{g}\right)}\right)-v_{1} \frac{R_{f}}{R_{1}} \\
& R_{f} v_{1}-v_{2} \frac{R_{f} R_{g}}{R_{2}+R_{g}}=v_{2} \frac{R_{1} R_{g}}{R_{2}+R_{g}}-R_{1} v_{\text {out }} \\
& R_{1} v_{\text {out }}=v_{2} \frac{R_{1} R_{g}}{R_{2}+R_{g}}+v_{2} \frac{R_{f} R_{g}}{R_{2}+R_{g}}-R_{f} v \\
& =v_{2}\left(\frac{R_{g}\left(R_{1}+R_{f}\right)}{R_{1}\left(R_{2}+R_{g}\right)}\right)-v_{1} \frac{R_{f}}{R_{1}} \\
& \text { If } \mathrm{R}_{1}=\mathrm{R}_{2} \text { and } \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}: v_{\text {out }}=\left(v_{2}-v_{1}\right) \frac{R_{2}}{R_{1}}
\end{aligned}
$$

Instrumentation Amplifier

An instrumentation amplifier is essentially a difference amplifier whose inputs are isolated from the source by Voltage followers. Virtually no current flows between v_{1} and v_{2}.

Why? Because any difference in Voltage between the v_{1} and v_{2} terminals of the first op amps must be matched by the Voltage across the two v - terminals. This appears across R3. The current to produce this drop must come through the two R2 resistors. If they are large that current will create a large Voltage across them.

UCLA	Medical Center	Center for
Cosnitive Neuroscience		

Integrated Instrumentation Amplifier

Second Order Filter Analysis

(op amp rules)

Although the algebra is tedious, these can be solved for $v_{\text {out }} / v_{i n}$:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\mathbf{Z}_{3} \mathbf{Z}_{4}}{\mathbf{Z}_{3} \mathbf{Z}_{4}+\mathbf{Z}_{2} \mathbf{Z}_{3}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{1} \mathbf{Z}_{2}}
$$

UCLA Medical Center

Center for
Cognitive Neuroscience

High Pass Filter

First and Second Order Filters

