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Electronic Elements and Circuits
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Voltage

■ Potential Energy from Charge Attraction
■ Separation of Charge results in Stored Energy

■ Electrical Potential energy is Measured in Volts (V) 
whose units are Joules/Coulomb

■ 1 eV = 1.6 X 10E-19 Joules

■ Voltage is sometimes called, “Electromotive Force” or 
e.m.f.

■ The notation for charge is Q
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Voltage Sources

■ Batteries store electrical potential energy by chemically 
separating ions

■ Salts separated across semi permeable membranes may 
be used as “batteries.”

❏ Symbol for a battery:

❏ Generic Voltage Source:

❏ Time Varying Voltage Source:
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Current

■ Electrical Kinetic Energy is called Current
■ Current is the motion of charge

■ The Electrical Engineers symbol for current is i (*).

■ Current Flows “through” conductors
■ Current is therefore dQ/dt

■ The Unit of Current is “Amperes” or amps.

❏ Symbol for a current source:
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* Hence, engineers use “j” to denote −1

+
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Resistance

■ Current flowing through a path experiences Resistance.

■ Less current flow through higher resistance:
❏ Ohm’s Law: i = V/R
❏ Larger resistance -> less current

■ Energy is dissipated (lost) to that resistance
■ As charge flows the stored energy is dissipated

■ The RATE of Energy dissipation is measured in Watts 
(power, Joules/second)

■ iV = (Joules/coulomb)(coulombs/s) = Joules/s. 
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Resistance

■ Insulators allow little or no current flow
■ Conductors pass current easily.

❏ conductor symbol:

■ Typical “Resistors” range in values from about 
1 Ohm to about 10E6 Ohm (10Megohm)
❏ resistor symbol:

■ A 1 Ohm resistor allows 1 Ampere of current to 
flow when 1 Volt is applied across it.
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Circuit

■ Circuits always show the complete path for current 
flow

■ Kirchhoff’s Laws:
❏ KCL: Current through any node adds to zero

■ any two terminal device is a node

❏ KVL: Voltage around any loop adds to zero
❏ Both laws are an expression of conservation of energy
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Series Circuit - Voltage Divider

■ In a series circuit KVL says that Vs = V1 + V2

■ KCL says that i is the same in R1 and R2
■ Ohms law states that V1 = iR1 and V2 = iR2

■ Therefore: Vs = i(R1+R2)

■ It follows that V2 = Vs (R2/(R1+R2))
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Parallel Circuit = Current Divider

■ KCL says that i = i1 + i2
■ KVL says that V1 =V2: Vs = i1 R1 = i2 R2

■ The apparent resistance is: Vs/(i1 + i2)
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Norton and Thévenin Equivalent

■ Real voltage and current sources have internal 
resistance
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In a real current source, 
as Load resistance 
increases, current drops

In a real voltage source, 
as Load resistance 
decreases, voltage drops

Norton Equivalent Thévenin Equivalent

©2010 Mark Cohen, all rights reserved www.brainmapping.org

Capacitor
■ When voltage is applied across an insulator charge 

moves onto the insulator.

■ If the voltage source is removed, the separated charge 
stores potential energy

■ Capacitance measures the amount of energy stored by 
separated charge: C = Q/V

■ Capacitance is measured in Farads
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Capacitor (cont’d)

■ If charge is applied to one side of the capacitor, equal 
and opposite charge will move to the other side.

■ This results in a net current “through” the capacitor.

■ This appears similar to Ohm’s law.
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Laplace Transform

■ Note that: 
■ Finding the derivative of a function of the form 

is like multiplying by s

■ Finding the integral is like dividing by s
■ Applying the Laplace transform typically reduces 

differential equations to simple algebra.
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Aest
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Capacitors and Sinusoids

■ Let:
■ For a capacitor:

■ A capacitor looks like a resistance whose magnitude 
goes as 1/ωC

■ A capacitor introduces a 90° phase difference between 
current and Voltage.
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iC = C dv
dt

= −ωCAsin(ωt)

−ωCAsin(ωt) =ωCAcos(ωt − 90°)
V
iC

= Acos(ωt)
ωCAcos(ωt − 90°)

= cos(ωt)
ωC cos(ωt − 90°)
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Capacitors and Laplace

■ Let

■ Therefore

■ A capacitor acts like a resistance whose value depends 
on C and s!
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V (t) = Aest

dV
dt

= sAest

i = sCAest

V
i =

Aest
sCAest

= 1
sC.
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Capacitor Demo
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Aluminum FoilWire

C = ε0A
D

ε0 ≈ 8.854 ×10−12    F /m
Typical Tape Thickness ~5E-5 m
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Laplace and Sinusoids

■ Through Euler’s formula with s=iω (or jω):

■ Letting:

we see that:

■ Whose real part is simply                             as before.
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Aest = Ae jωt = A(cos(ωt)+ j sin(ωt))

V (t) = Acos(ωt)
=ℜ[Ae jωt ]

iC = sCAest = jωCA(cos(ωt)+ j sin(ωt))
= jωCAcos(ωt)−ωCAsin(ωt)

iC = −ωCAsin(ωt)
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Impedance 

■ Resistance is the proportionality between constant 
current and constant Voltage.

■ Impedance is the ratio between time-varying Voltage 
and time-varying current.

Noting that Z, I and V may be complex values

■ Z has a magnitude in Ohms, but may also include a 
phase.
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V = iR

V = IZ
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Inductance
■ Current creates a magnetic field about the conductor

■ Time-varying Currents create a Time-Varying Field

■ Time varying Magnetic Fields generate an e.m.f. that 
induces a time-varying current in conductors

■ The e.m.f. is proportional the the rate of magnetic field 
change:
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Current

Magnetic Field

e.m. f .= k dB
dt

■ Commercial Inductors are simply coils of wire.

Inductor Circuit Symbol:

or
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Inductors
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Inductors

■ The magnetic field created by each loop of a coil is 
coupled to all of the other loops.

■ In general, the magnetic field created by a time-varying 
current opposes the same current flow in the other 
coils

■ The result is that: 

where is the voltage across the
inductor and L is the inductance
value (in Henries).
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VL = L
di
dt
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Frequency Characteristics of Inductors
■ Following the same reasoning as we used for a 

capacitor. Let:

■ Thus                                or:

■ An inductor behaves like a resistor of magnitude sL that 
introduces a +90° phase shift.
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i = Aest ,  and s = jω
V = sLAest

iL = Ae
st

VL
iL
=LsAe

st
Aest

= sL.

iL =ℜ[Ae jωt ] = Acos(ωt)
d(iL )
dt

= −ωAsin(ωt)

VL
iL

= Lℜ[−ωAsin(ωt)
Acos(ωt)

].
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Complex Impedance

■ Both Capacitors and Inductors have complex 
impedance: V/I is a complex quantity

■ For a Capacitor, V/I=1/sC.
■ For an Inductor, V/I=sL.

■ In a circuit, we can replace all inductors and capacitors 
by their complex impedance:

■ The circuits can then be analyzed with KVL and KCL
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R R

C 1/sC

RR

L
sL

■ This is just a Voltage Divider circuit
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Example
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R

C
vin vout

R

1/sC
vin vout

vout = vin
1
sC

R + 1sC

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

vout
vin

= 1
sRC +1
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Diode
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Making Signals Bigger

■ Physiological signals are too small to observe directly
■ Passive devices (transformer)

■ Conservation of Energy:
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viniin = voutiout
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Amplifiers

■ Generally: Total power is increased

■ Amplifiers require an added source of energy
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viniin < voutiout

ib
ic

ie = ib + ic

vbe ≈ 0.6 Volts
base

emitter

collector

Transistor

+

voutvin

i outi in
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Ground

■ Ground is any selected node in a circuit

■ Usually, ground is selected as either one side of the 
input signal or the power supply.

■ All remaining Voltages are compared to Ground.
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voutvin

i outi in

voutvin
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+
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Operational Amplifier

■ Ideal Op Amp
❏ infinite gain
❏ No current flows between +in and -in

■ Real Op Amp
❏ maximum output Voltage ≈ the power supply
❏ gain > 1E4

❏ input current << 1μA
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vout

vin

+

+

+in

-in
On the Op Amp:

+, +in, v+ are used equivalently
-, -in, v- are used equivalently
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Datasheet
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Datasheet (cont’d)
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Datasheet (cont’d)

32

©2010 Mark Cohen, all rights reserved www.brainmapping.org

Op Amp Non-linear Operation

■ “Open Loop” mode.
❏ E.g., “Comparator”
❏ If: +in>-in then vout ≈ vpos

❏ If: +in<-in then vout ≈ vneg
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vout

vin

+

+

+in

-in

vpos

vin
voutvneg
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R2
R3

vout+

–

C1
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Multivibrator
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Linear Operation for Op Amps

■ Negative Feedback
■ +in ≈ -in

■ -vcc < vout < +vcc

■ Voltage at inverting (v–, or -in) and non-inverting 
(v+, or +in) inputs is equal.

■ No current flows between these inputs

■ vout is adjusted as needed for the above to be true.
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vout

vin

+

+
+in

-in
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R2
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Inverting Amplifier

36

In these slides, -in is the Voltage at the inverting
input of the op amp (with respect to ground), and +in
is the voltage at the non-inverting input.

In this circuit, negative feedback 
is used to ensure that v– and v+ 
are kept equal. In this case, they 
are kept at ground.

Because no current can flow between the
inverting (–) and non-inverting (+) inputs to the
op amp, the current through R2 must equal iR1.
Therefore the Voltage across R2 must equal
R2* iR1. This Voltage must therefore be sourced
by the output of the op amp:

vR1 = vin

iR1 =
vin
R1

vout = −iR1R2

= −R2 vin
R1

vout
vin

= −R2
R1



+in

-in

R1 R2
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Inverting Amplifier Equivalent Circuit
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In an op amp, vout is controlled by the difference between -in and +in. The output Voltage 
is fed back (negative feedback) to the v– input so that the (+in – -in) ≈ 0.

No current flows between +in and -in therefore, in this case, the current through R1 also 
goes through R2. The energy to supply that current is provided by the op amp (actually 
from its power supplies).

Notice the direction of the current through R2: when vin is positive, vout must be negative.

From the perspective of the input source, the op amp can be modeled as a resistor of 
value, R1.

vin vout vout

vin +in

-in

+

–
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Voltage Follower
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At first blush, this very common op amp circuit seems odd. After all, it is 
clear that if -in and +in are equal vout = vin.

What makes this useful, is that no matter what load vout is connected to, the 
op amp ensures that no current flows into the +in input. The Voltage follower
isolates the input source from the load driven by vout. This means that the 
input source is not altered by driving a load. Essentially no current flows out 
of the input source (which therefore loses no energy).

vin

voutiR2iR1 +in
-in

R1 R2R1 R2

vout
vin

+

–

©2010 Mark Cohen, all rights reserved www.brainmapping.org

Non-Inverting Amplifier
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In this case the -in input is going to be set to vin 
by the output Voltage source of the op amp. 
This means that vout must be equal to the 
Voltage across R2, plus the Voltage across R1 
(which is vin).
If vin is positive the current flows in the 
direction shown. This means that vout also is 
positive.

vout = vin + iR1R2

= vin +
vin
R1

R2

= vin 1+
R2
R1

⎛
⎝⎜

⎞
⎠⎟

vout
vin

= 1+ R2
R1

= R1+ R2
R1
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Inverting Summing Amplifier

40

The current through R4 is equal to 
the sum of the currents through R1, 
R2 and R3 (KCL).

The idea with R5 is that a small “bias” current must 
run into both Op amp inputs. To ensure that the 
voltages at both inputs are the same, the resistance 
at the inputs must be kept equal. Hence R5 is set to 
the equivalent parallel resistance of R1, R2 R3 and 
R4
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Differentiator and Integrator
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vo (t) =
1
RC

vin (t)0

t

∫ dt + v0 (0) v0 (t) = −RC dvin (t)
dt

vout
vin

= Z2
Z1

vout
vin

=
1
sC
R

= 1
sRC

vout
vin

= R
1
sC

= sRC
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Difference Amplifier
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A “difference amplifier” amplifies the difference in voltage
between to points, v1 and v2, rejecting any Voltage they have
in common.
The current through R1, iR1, is (v1–v+)/R1, and is the same as
the current through R2, which is (v+–vout)/R2.
The Voltage divider at the non-inverting input ensures that: v+ = v2

Rg
R2 + Rg

⎛

⎝⎜
⎞

⎠⎟
.

v1 − v+
R1

= v+ − vout
Rf

v1 − v2
Rg

R2 + Rg

⎛

⎝⎜
⎞

⎠⎟

R1
=
v2

Rg
R2 + Rg

⎛

⎝⎜
⎞

⎠⎟
− vout

Rf

Rf v1 − v2
Rf Rg
R2 + Rg

= v2
R1Rg
R2 + Rg

− R1vout

R1vout = v2
R1Rg
R2 + Rg

+ v2
Rf Rg
R2 + Rg

− Rf v

vout = v2
Rg

R2 + Rg
+ v2

Rf Rg
R1(R2 + Rg )

− v1
Rf

R1

= v2
R1Rg

R1(R2 + Rg )
+

Rf Rg
R1(R2 + Rg )

⎛

⎝⎜
⎞

⎠⎟
− v1

Rf

R1

= v2
Rg R1 + Rf( )
R1(R2 + Rg )

⎛

⎝
⎜

⎞

⎠
⎟ − v1

Rf

R1

vout = (v2 − v1)
R2
R1

If R1=R2 and Rf=Rg:
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Instrumentation Amplifier
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An instrumentation amplifier is essentially a difference amplifier whose inputs are 
isolated from the source by Voltage followers. Virtually no current flows between v1 
and v2.

Why? Because any difference in Voltage between the v1 and v2 terminals of the first 
op amps must be matched by the Voltage across the two v– terminals. This appears 
across R3. The current to produce this drop must come through the two R2 resistors. 
If they are large that current will create a large Voltage across them.
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Integrated Instrumentation Amplifier
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By making the amplifier on a
single piece of silicon, the
manufacturer can ensure that
all of the resistors are 
matched
precisely. In turn, this makes
sure that common mode
signals are heavily 
attenuated.
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Second Order Filter
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f0 = 100 Hz

f0 = 10 kHz

Z

Z

vout
vin va

+

–
Z1 Z2

3

4
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Second Order Filter Analysis
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v+ = v− = vout   (op amp rules)

By KCL: (vin − va )
Z1

= (va − vout )
Z2

+ (va − vout )
Z3

,  and

(va − vout )
Z2

= vout
Z4

Although the algebra is tedious, these can be solved for vout/vin:

vout
vin

= Z3Z4

Z3Z4 +Z2Z3 +Z1Z3 +Z1Z2

vout
vin

= Z3Z4

Z3Z4 +Z2Z3 +Z1Z3 +Z1Z2
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Low Pass Filter
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Z1 = Z2 = R,    Z3 = Z4 =
1
sC

vout
vin

=
1
s2C 2

1
s2C 2 + R sC + R sC + R2

= 1
1+ 2sRC + s2R2C 2 =

1
1+ sRC( )2

vout
vin

+

–
R R

1/sC

1/sC
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High Pass Filter
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vout
vin

= Z3Z4

Z3Z4 +Z2Z3 +Z1Z3 +Z1Z2

Z1 = Z2 =
1
sC

,    Z3 = Z4 = R

vout
vin

= R2

R2 + R sC + R sC + 1s2C 2

= R2s2C 2

1+ 2sRC + s2R2C 2 =
(sRC)2

1+ sRC( )2

vout
vin

+

–

R

R

1/sC 1/sC
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First and Second Order Filters
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