Imaging Genetics: Heritability, Linkage & Association

David C. Glahn, PhD
Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University

July 17, 2011
Memory Activation & APOE ε4

- Risk gene for Alzheimer’s
- 16 APOE ε4
- 14 APOE ε3

Fear Response & Serotonin Transporter Gene (SLC6A4)

Hariri et al., Science, 2002
Human Genome

23 Chromosomes
~20-25,000 genes
~3 billion base pairs
Approaches to Genotyping

Candidate genes: genotype only markers in genes potentially related to the trait.
- **Pro**: fast and easy, may be able to be more thorough with a higher density of markers
- **Con**: must get lucky in choice of genes, lower potential for something really novel

Genome screen: genotype anonymous markers spanning the genome at regular intervals
- **Pro**: can identify previously unknown genes, covers all of the possibilities
- **Con**: slower and more expensive, may have lower marker density which could translate to less power
Questions for the Study of Complex Trait Genetics

1) Is this trait influenced by genetic factors? How strong are these genetic influences?

2) Which traits are influenced by the same genes?

3) Where are the genes that influence a trait?

4) What are the specific genes that influence the trait?

5) What specific genetic variants influence the trait and how do they interact with each other and with the environment?
Question 1: Heritability

Is this trait influenced by genetic factors?

How strong are these genetic influences?
Defining Heritability

Phenotype (P) = Genotype (G) + Environment (E)
Variance Decomposition

\[\sigma_p^2 = \sigma_g^2 + \sigma_e^2 \]
\[\sigma_g^2 = \sigma_a^2 + \sigma_d^2 \]
\[\sigma_e^2 = \sigma_c^2 + \sigma_{eu}^2 \]

\[\mu = \frac{\sum x_i}{n} \]
\[\hat{\sigma}^2 = \frac{\sum (x - \hat{\mu})^2}{n} \]

\(\sigma_p \) = total phenotypic
\(\sigma_g \) = genetic
\(\sigma_e \) = environmental
\(\sigma_a \) = additive genetic
\(\sigma_d \) = dominance

Narrow-Sense Heritability (h^2)

- **Heritability (h^2):** the proportion of the phenotypic variance in a trait attributable to the additive effects of genes.

\[h^2 = \frac{\sigma_a^2}{\sigma_p^2} \]
Conceptualizing Heritability

- Heritability estimates vary between 0 and 1
 - 0, genetic factors do not influence trait variance
 - 1, trait variance is completely under genetic control
- If $h^2=0.5$, then 50% of phenotypic variation is due to genetic variation.
 - Not that the trait is 50% caused by genetics
- Stronger heritability does not imply simple genetics
Estimating Heritability with Twins

Falconer’s Method

\[h^2 = 2 \times (r_{MZ} - r_{DZ}) \]

\(r_{MZ} \) = correlation between monozygotic co-twins
\(r_{DZ} \) = correlation between dizygotic co-twins
Modeling the Phenotype:
\[p = \mu + \sum \beta_i x_i + a + d + e \]

- \(\mu \) Population mean
- \(\beta \) Regression coefficients
- \(x \) Scaled covariates
- \(a \) Additive genetic effects
- \(d \) Dominance genetic effects
- \(e \) Random environmental effects
Simple Kinship Matrix

Dad | Mom
1 | 2 | 3

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>M</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>1</td>
<td>0</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>M</td>
<td>0</td>
<td>1</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>1</td>
<td>½</td>
<td>½</td>
<td>1</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>2</td>
<td>½</td>
<td>½</td>
<td>½</td>
<td>1</td>
<td>½</td>
</tr>
<tr>
<td>3</td>
<td>½</td>
<td>½</td>
<td>½</td>
<td>½</td>
<td>1</td>
</tr>
</tbody>
</table>
Kinship Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>½</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>½</td>
</tr>
<tr>
<td>4</td>
<td>½</td>
<td>½</td>
<td>0</td>
<td>1</td>
<td>¼</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>½</td>
<td>½</td>
<td>¼</td>
<td>1</td>
</tr>
</tbody>
</table>
Gray-Matter Thickness Heritability

Thompson et al., *Nat Neuro*, 2001 10 MZ / 10 DZ pairs
Gray-Matter Thickness Heritability

Kremen et al., *NeuroImage*, 2010

110 MZ / 92 DZ pairs
Cortical Thickness & Surface Area

Winkler et al., *NeuroImage*, 2009

486 family members
White-Matter Tracts (DTI) h^2

Kochunov et al., *NeuroImage*, 2010

467 family members
White-Matter Hyperintensity h^2

Total Cranial: 0.91
Brain Parenchyma: 0.92
WMH: 0.73

Carmelli et al., *Stroke*, 1998
74 MZ / 71 DZ pairs
Task Based fMRI Heritability

Koten et al., *Science*, 2009

10 MZ pairs / 10 sibs
Resting State fMRI Heritability

$h^2 = 0.424$

Glahn et al., *Proc Nat Sci USA*, 2010

333 family members
1. Heritability is a population level parameter, summarizing the strength of genetic influences on variation in a trait among members of the population. It doesn’t tell you anything about particular individuals.

2. Heritability is an aggregate of the effects of multiple genes. It tells you nothing about how many genes influence a phenotype. A high heritability is not necessarily ‘better’ if it is due to many, many genes.
Question 2: Pleiotropy

Which traits are influenced by the same genes?
Levels of Pleiotropy

No Pleiotropy

Partial Pleiotropy

Full Pleiotropy
Genetic Correlation (Pleiotropy)

• Genetic correlation (ρ_g): a measure of the overlap in genetic effects between traits.

• ρ_g varies from -1 to 1

• 0 = no pleiotropy; -1 or 1 = complete pleiotropy
Cortical Thickness & Surface Area

Schmitt et al., *Cerebral Cortex*, 2008 107 MZ / 47 DZ / 228 others
Winkler et al., *NeuroImage*, 2009 486 family members
Cortical Thinning & IQ

\[\rho_g = 1.0/1.0 \]

Brans et al., *J Neurosci*, 2010

\[\rho_g = 1.0/0.7 \]

77 MZ / 84 DZ pairs
Superior longitudinal fasciculus – Spatial DRT: \(\rho_g = 0.593 \)

Karlsgodt et al., *J Neurosci*, 2010
467 family members
Where are the genes that influence a trait?
Two Common Methods for Gene Localization

Linkage analyses: test for co-segregation of phenotype and genotype within families - a function of physical connections of genes on chromosomes

Association analyses: test for deviations of phenotype-genotype combinations from that predicted by their separate frequencies - a function of linkage disequilibrium created by population history
Pro: Can be done with unrelated individuals. Statistical methods easy and fast. May be able to detect loci of smaller effect with a given sample size.

Con: Requires disequilibrium, which may not be present, making power difficult to estimate. Susceptible to allelic heterogeneity.
Genome Wide Association

- Tests for correlation between genotype and phenotype

- Association analyses work when:
 1) your genotyped marker is a functional polymorphism
 2) your genotyped marker is in disequilibrium with a functional polymorphism

- Currently: 700K to 1.5Mil SNPs
Linkage Disequilibrium (LD)

- Linkage disequilibrium is the non-random association of alleles at two or more loci
- LD = the population frequency of allelic combinations – the expected combinations from random formation of haplotypes
- Level of LD is influenced by a number of factors including genetic linkage, selection, the rate of recombination, the rate of mutation, genetic drift, non-random mating, and population structure.
- LD is unpredictable
• Unlikely that functional variants are typed
• Association studies are dependent on LD between a genotyped marker and a functional variant.
• May change with complete sequencing
Multiple testing: p-values

• A p-value of 0.05 implies that 5% of the time we will reject the null hypothesis (i.e. conclude that we have an association) when the null hypothesis is actually correct.

• If we test 100 SNPs and each time we use a p-value of 0.05 as our cutoff for significance, we would expect 5 of those SNPs to be significant ($p < 0.05$) just by chance.
Multiple testing

• The simplest correction is the Bonferroni: multiply each p-value by the total number of tests, or divide the significance threshold required by the number of tests (0.05 / #).

• For 550K SNPs, requires $p=1.2 \times 10^{-7}$

• This maintains an experiment-wide significance threshold, but may be too conservative when the tests are correlated, as they might be if some of the markers tested are in LD with each other.
Association found at rs2342227 (p=4.0x10^{-10}), chr 13q31, near SLIT- & NTRK-like family, member 6. SLITRks are expressed predominantly in neural tissues and have neurite-modulating activity. Associated with Tourette's Syndrome

Glahn et al., ACNP, 2009
Temporal Lobe GWA

Stein et al., *NeuroImage*, 2010

n=742
rs10845840
p=1.3x10^{-7}
rs2456930
P=3.1x10^{-7}
VBM & GWA

Stein et al., *NeuroImage*, 2010
Limitations of Association

- A QTL may be in equilibrium with the other polymorphisms surrounding it. Disequilibrium need not be present.
- Since LD need not be present, negative association results have implications only for the marker you have tested, lack of association does not exclude the gene or region.
- Population Stratification: If the sample contains multiple populations that differ in the trait of interest, any locus whose allele frequencies differ between the populations will show association.
Example: Hypertension

African Americans
70% A, 30% B

European Americans
50% A, 50% B
Example: Hypertension

Affected
64% A, 36% B

Unaffected
56% A, 44% B
1. Match cases and controls carefully or try to obtain subjects from a single well defined population.

2. Use one of a variety of statistical approaches designed to deal with population stratification (e.g. TDT, genomic control)
Pro: Power to find a gene can be more easily quantified. Guaranteed to work if the sample size is large enough. Not influenced by allelic heterogeneity.

Con: Need a large sample of related individuals. “Large enough” may be too large to be practical.
Genetic loci that are physically close to one another tend to stay together during meiosis.

Independent assortment occurs when the genes on different chromosomes are separated by a great enough distance on the same chromosome that recombination occurs at least half of the time.

An exception to independent assortment develops when genes appear near one another on the same chromosome. When genes occur on the same chromosome, they are usually inherited as a single unit. Genes inherited in this way are said to be linked, and are referred to as "linkage groups."
Measuring Linkage: Lod Score

LOD = $\log_{10}(\text{probability of birth sequence with a given linkage value}/\text{probability of birth sequence with no linkage})$

$$LOD = \log_{10}((1-\theta)^{NR} \times \theta^R)/0.5^{NR+R}$$

NR denotes the number of non-recombinant offspring, R denotes the number of recombinant offspring. Theta = recombinant fraction = R / (NR + R)

A LOD score ≥ 3.0 is considered evidence for linkage
A LOD score of 3 indicates 1000 to 1 odds that the linkage being observed did not occur by chance
A LOD score ≤ -2.0 is considered evidence to exclude linkage
Bivariate linkage for subcortical & ependymal HWM volumes (log of odds=2.12) on chr 1 at 288 cM.

Kochunov et al., *Stroke*, 2009

459 family members
Linkage with White-Matter Hyperintensitites/Blood Pressure

Kochunov et al., Stroke, 2010

LOD

357 family members
Linkage vs. Association

Association: you’re testing for an excess of a specific combination of alleles at two loci. The same alleles must be traveling together at a population level. Detects effects of common variants.

Linkage: you’re testing for an excess of the parental type. That parental type (i.e. the alleles traveling together) could be different in every family (i.e. linkage equilibrium) and you would still get linkage. Can detect cumulative effect of multiple variants (including rare variants).
Determining Linkage Power

The power to map a QTL in a human linkage study is a function of:

1. locus-specific heritability (genetic signal-to-noise ratio)
2. Sample size
3. Pedigree size and complexity
Sample size required for 80% power to detect linkage to a QTL at a LOD of 3.
Question 4: Identification

What specific genes influence the trait?
Identifying a Causal Gene

Once a significant QTL is identified, additional genetic tests are needed to determine the exact identity of the gene:

- **Association**: identifies a genomic region of ~500kb (250kb to either side of the association) determined by the general extent of linkage disequilibrium.
- **Linkage**: detect the cumulative additive genetic signal of all functional variants within a much larger genomic region (e.g. 10-15Mb).
VPS13A: A Candidate Gene for Brain Structure/Function

- VPS13A is a 73 exon gene localizing to chromosome 9q21

- Involved in chorea-acanthocytosis
 - Schizophrenia
 - OCD
 - Frontal lobe functioning

Bellis et al., ASHB, 2009
Association Analysis: VPS13A SNPs and Frontal Lobe Volume

Bellis et al., ASHB, 2009
Take Home Message

• “This may be the most important thing I say in this lecture. There is no one size fits all in genetic analysis of complex traits.”

–Laura Almasy
Coffee Break

DRINK COFFEE
Do Stupid Things Faster with More Energy