Setting up models
Part 2
NITP 2011
How this works

- Model setups based on FSL list questions!
- I’ll pose the problem and you work out the design matrix and contrasts
Model 1

- You have estimated successful stop pre and post training (2 runs) for each subject. At the group level you have 8 subjects with 2 measures each, what is the appropriate model?
 - How do you test post-pre training?
Paired t test
Model 2

- You have 9 subjects and all but one subject have complete pairs of data (one subject missed the second scan)
 - Can you still use a paired t test?
 - Other options?
Model 2

• Suggestions
 – If there is high within subject correlation (like in the tire example earlier) you need a paired test
 • Toss the subject with incomplete data
 – If there isn’t a high correlation, a two-sample t-test may be okay
 • Be careful or else you’ll be losing power
 • Use complete data to compare paired t test to 2 sample t test
Model 3

- You have 5 subjects scanned under 3 conditions (A, B & C) and you want to make all pairwise comparisons in one model
 - You must account for repeated measures
 - Construct 3 contrasts: A-B, B-C, A-C
Model 3

• You have 5 subjects scanned under 3 conditions (A, B & C) and you want to make all pairwise comparisons in one model
 – You must account for repeated measures
 – Construct 3 contrasts: A-B, B-C, A-C

If you’re totally stuck, set up a factor effects ANOVA model and I’ll show you how to build off that in a second…
Triple paired t test

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
<th>B5</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Triple paired t test

• Really just a repeated measures ANOVA using factor effects
Note on repeated measures ANOVA

- As long as each subject has repeated measures for all cells of the ANOVA use factor effects and split up the intercept into subject-specific means.
Note on repeated measures ANOVA

• As long as each subject has repeated measures for all cells of the ANOVA use factor effects and split up the intercept into subject-specific means

• Won’t work if you do not have repeated across both factors
Note on repeated measures ANOVA

• As long as each subject has repeated measures for all cells of the ANOVA use factor effects and split up the intercept into subject-specific means

• Won’t work if you do not have repeated across both factors
 – Eg. 2x2 ANOVA
 • Factor 1: Pre/post training (everybody has both)
 • Factor 2: control/patient (each subject only in one group or the other)
Model 4

- **Goal:** Set up an 2 way ANOVA where
 - Repeated measure on first factor (Time two levels: time 1 and time2)
 - Not repeated on second factor (Group, 2 groups patients and controls)
- **Contrast of interest**
 - Test whether the difference in activation between the two times differs between groups
What is wrong with this?
What is wrong with this?

Rank deficient...but a good effort!
Suggested model

- Extension of the paired t test
- Adjust for repeated measure within group

\[c = [1, -1, 0, 0, \ldots, 0] \]
Another model

c = [0 1 0 00]
Model 5

• I would like to run a higher level repeated measures analysis on a group of 8 subjects scanned twice including a covariate (time between 1st and 2nd scan). I’m interested in the difference between the 1st and 2nd scan and the effect of the time between the 2 scans. I’m not sure how to set up the design.
Model 5

• Summary
 – Sort of like a paired t-test
 • Want to compare scan 1 to scan 2
 – BUT, second scan occurred at a different time for each subject, so they also want to adjust for this effect

• Construct design for 3 subjects where second scans occurred at 2, 5, and 3 months, respectively
Model 5

\[
\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
-1 & 2 & 1 & 0 & 0 \\
-1 & 5 & 0 & 1 & 0 \\
-1 & 3 & 0 & 0 & 1
\end{pmatrix}
\]
Model 5

\[
\begin{bmatrix}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
-1 & 2 & 1 & 0 & 0 \\
-1 & 5 & 0 & 1 & 0 \\
-1 & 3 & 0 & 0 & 1
\end{bmatrix}
\]

Note: It isn’t likely that the parameter corresponding to the first regressor would be significant, in the presence of the 2nd regressor.
Questions?