Genetic Analysis of Brain Images from 21,000 People: The ENIGMA Project

Paul M. Thompson¹ on behalf of the ENIGMA Consortium²

¹Professor of Neurology & Psychiatry, Imaging Genetics Center, Laboratory of Neuro Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA ² <u>http://enigma.loni.ucla.edu</u>

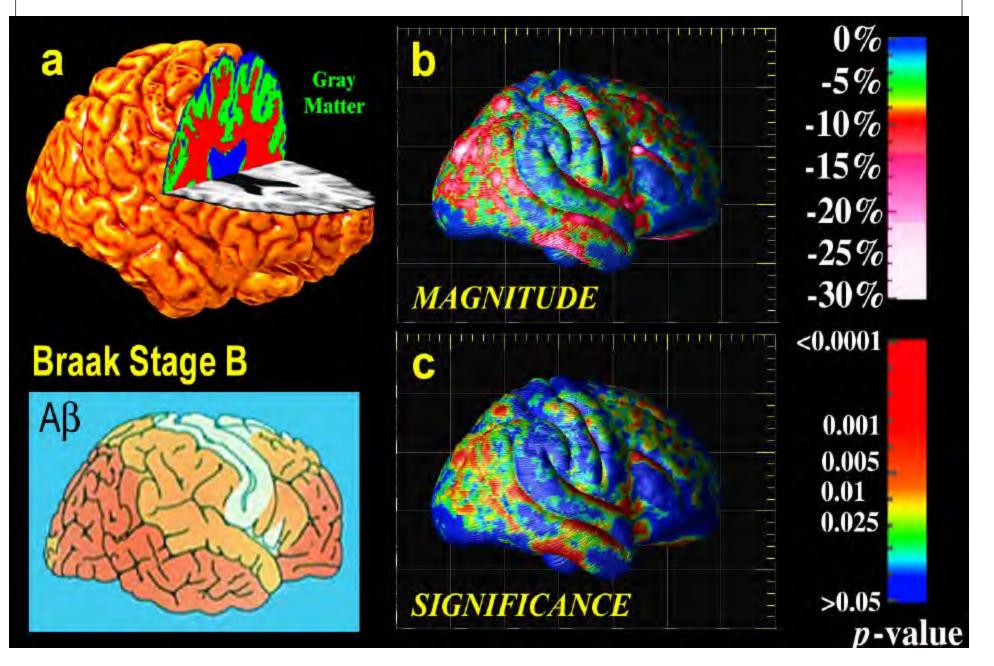
thompson@loni.ucla.edu

Introduction: What is the ENIGMA Project?

- Worldwide Consortium we relate human brain images to genome-wide scans (>500,000 common variants in your DNA)
- **Discover genetic variants that affect brain** / may also affect disease risk
- Enabled largest brain imaging studies ever performed (*Nature Genetics*, Apr 15 2012; 21,151 subjects, now increasing)
- 207 co-authors, 125 institutions, >500,000 SNPs, range of brain measures (massive global collaboration; "Crowd-sourcing")
- Founded 2009 by triumvirate of imaging genetics labs: Thompson (UCLA), Wright/Martin (Queensland), Franke (Netherlands), many more PIs & their teams run Working Groups
- Working Groups assess different brain measures ENIGMA2 (morphometry), ENIGMA-DTI, ENIGMA-PIB, ENIGMA-Mouse, ENIGMA-PGC, Case-Control Working Groups

Why screen 21,000 brain images?

- Amass a sample so vast that we can see how single-letter changes in your DNA affect the brain, in the midst of all the other factors that affect your brain (age, education, abused drugs, alcohol, body mass index, ..)
- Do epidemiology with images (exercise, diet, medication)
- Discover genes that:

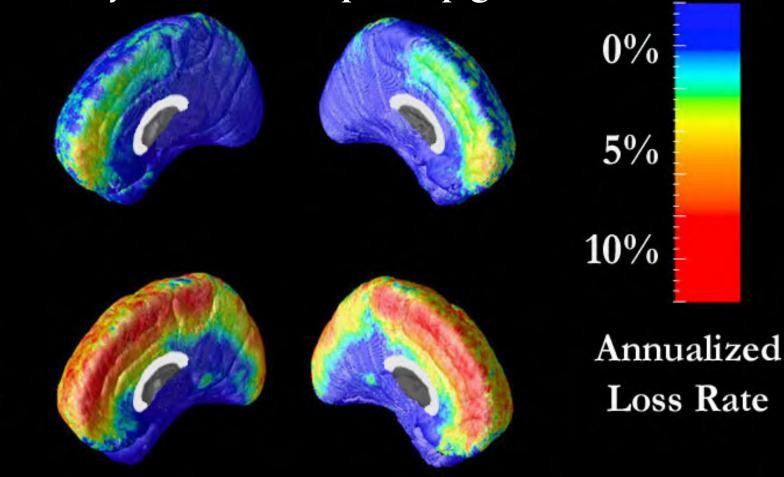

- promote brain degeneration / risk for disease, affect brain wiring and organization (new leads in autism, Alzheimer's disease)

- help estimate our **personal risk** of mental decline

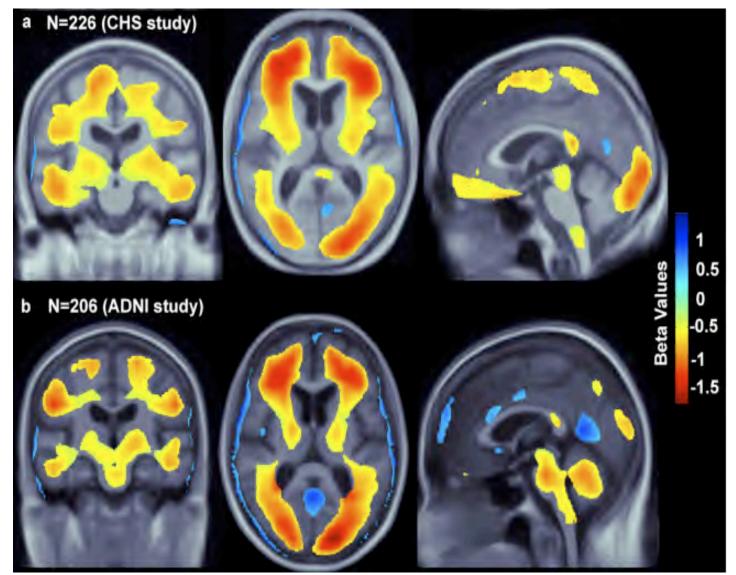
- genetic profiling can empower drug trials (we do this now)

Discover new drug targets

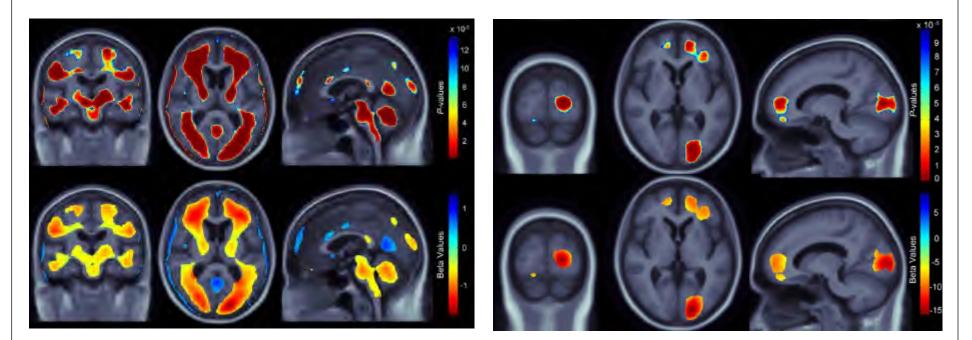
What factors harm the brain? 1. Diseases, such as Alzheimer's – several commonly carried genes boost our risk for this (*ApoE4*: 3x; *CLU*, *CR1*, *PICALM*: 10-20% more risk each)



Imaging can pick up very subtle modulatory effects -Olanzapine Slows Gray Matter Loss; Imaging Reveals Differences; maybe it can also pick up gene effects


olz

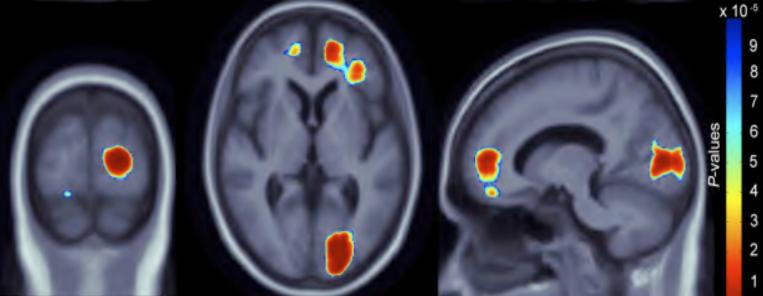
hal


Thompson/Bartzokis/Lilly-HGDH Drug Trial/Lieberman 2008

'Obese' People have 8% more brain atrophy locally (N=432 MRI scans). Maps show % tissue deficit per unit gain in body mass index (BMI)

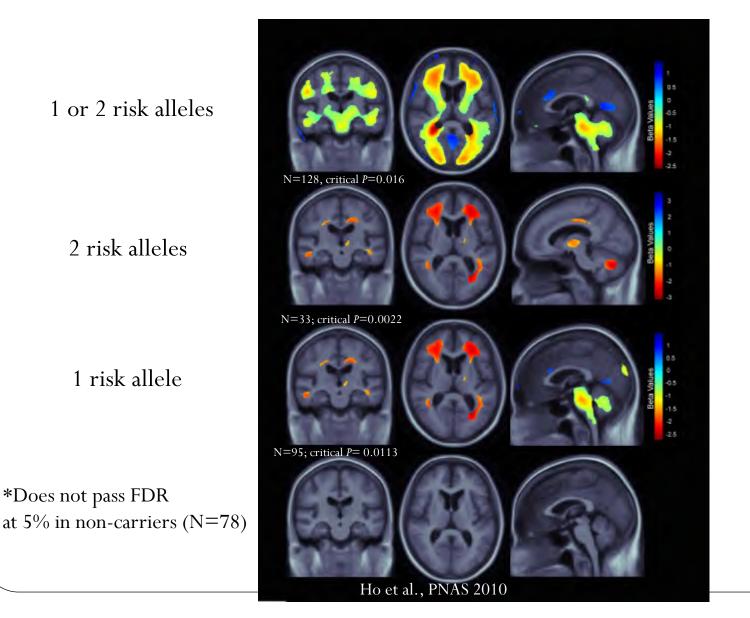
¹Raji et al. Brain Structure and Obesity. *Human Brain Mapping, Aug. 2009.*

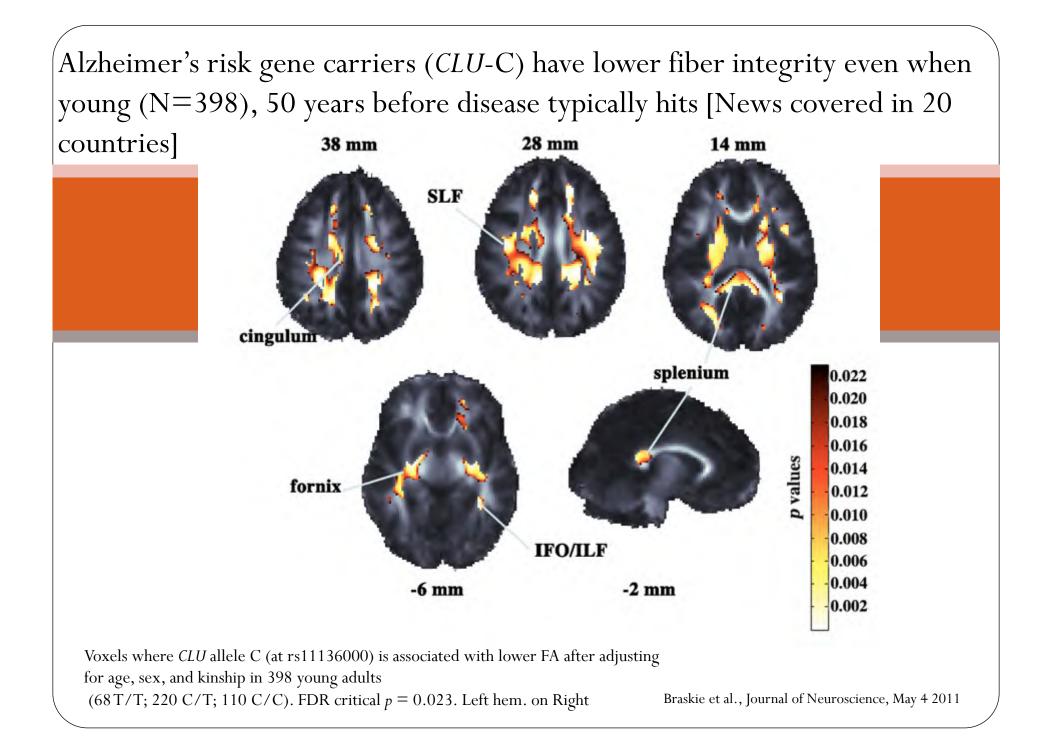
Geneticists discovered an "obesity susceptibility gene" (*FTO*) – surprisingly, we were able to pick up the effect of this common variant in brain images (Ho PNAS 2010)

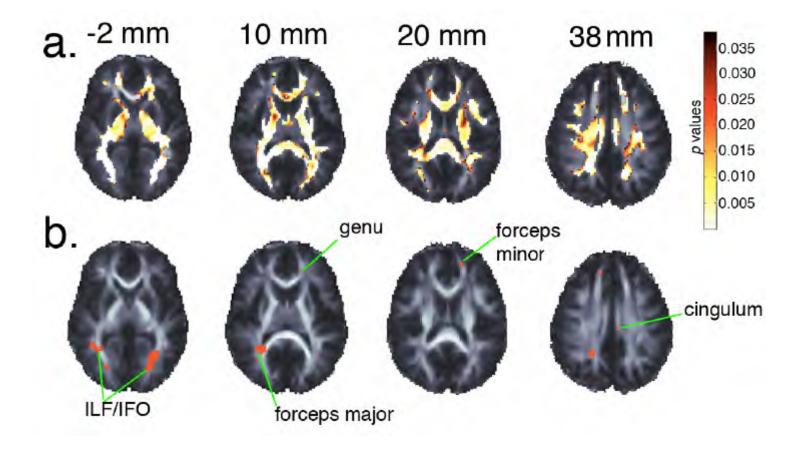

BMI (N=206 healthy elderly; corrected for multiple comparisons) *FTO* association (N=206 healthy elderly; corrected for multiple comparisons)

Obesity Risk Gene Carriers have Greater Brain Atrophy

46% of Western Europeans carry at least one adverse allele at this obesity risk locus, in *FTO* gene; for each 'bad' allele: gain 3 lbs, 1/2 inch waist circumference, crave ~200 more calories/day They have a regional ~10% frontal lobe, ~15% occipital lobe deficit locally – regions with atrophy in people with higher BMI.

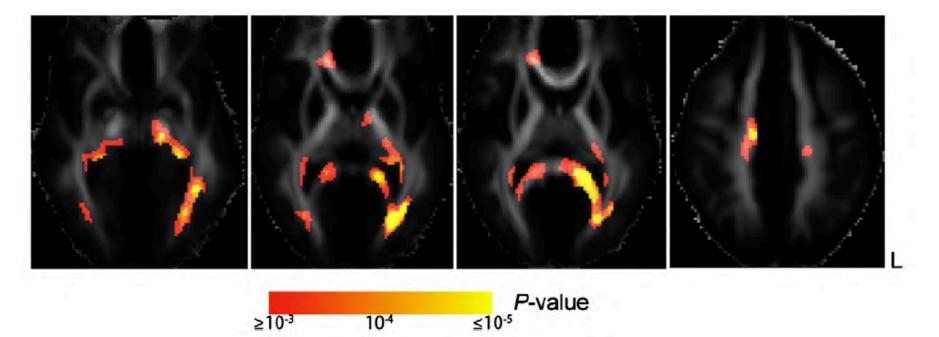

May be direct effect on brain, or mediated by BMI, or both


Significance Maps in *N*=206 normal subjects

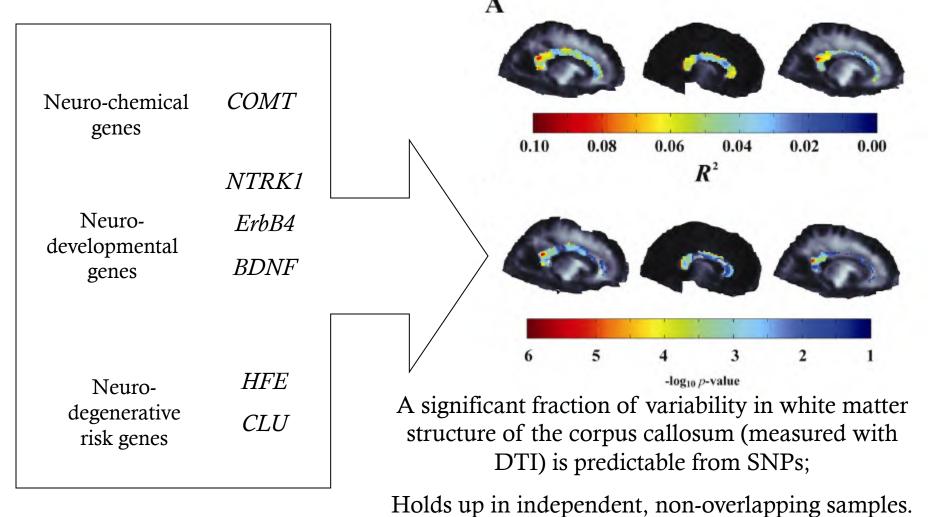

April J. Ho^{1*}, Jason L. Stein^{1*}, Xue Hua PhD¹, Suh Lee¹, Derrek P. Hibar¹, Alex D. Leow MD PhD^{1,2}, Ivo D. Dinov PhD¹, Arthur W. Toga PhD¹, Andrew J. Saykin PsyD³, Li Shen PhD³, Tatiana Foroud PhD⁴, Nathan Pankratz⁴, Matthew J. Huentelman PhD⁵, David W. Craig PhD⁵, Jill D. Gerber⁵, April N. Allen⁵, Jason J. Corneveaux⁵, Dietrich A. Stephan⁶, Bryan M. DeChairo PhD⁷, Steven G. Potkin MD⁸, Clifford R. Jack Jr MD⁹, Michael W. Weiner MD^{10,11}, Cyrus A. Raji PhD^{12,13}, Oscar L. Lopez MD¹⁷, James T. Becker PhD¹⁴⁻¹⁶, Owen T. Carmichael PhD¹⁸, Charles S. DeCarli MD¹⁹, Paul M. Thompson PhD^{1,*}, and the ADNI (2010). Commonly carried allele within *FTO*, an obesity-associated gene, relates to accelerated brain degeneration in the elderly, PNAS 2010.

Depending on your *FTO* genotype, BMI may affect you in a different way

Effect is even stronger for carriers of a schizophrenia risk gene variant, *trkA-T* (N=391 people)



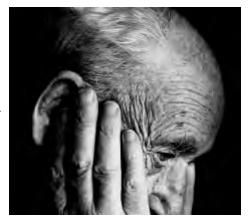
p values indicate where *NTRK1* allele T carriers (at rs6336) have lower FA after adjusting for age, sex, and kinship in 391 young adults (31 T+; 360 T-).
 FDR critical *p* = 0.038.

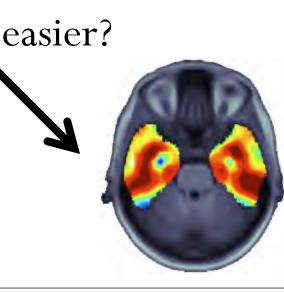

b. Voxels that replicate in 2 independent halves of the sample (FDR-corrected). Left is on Right.

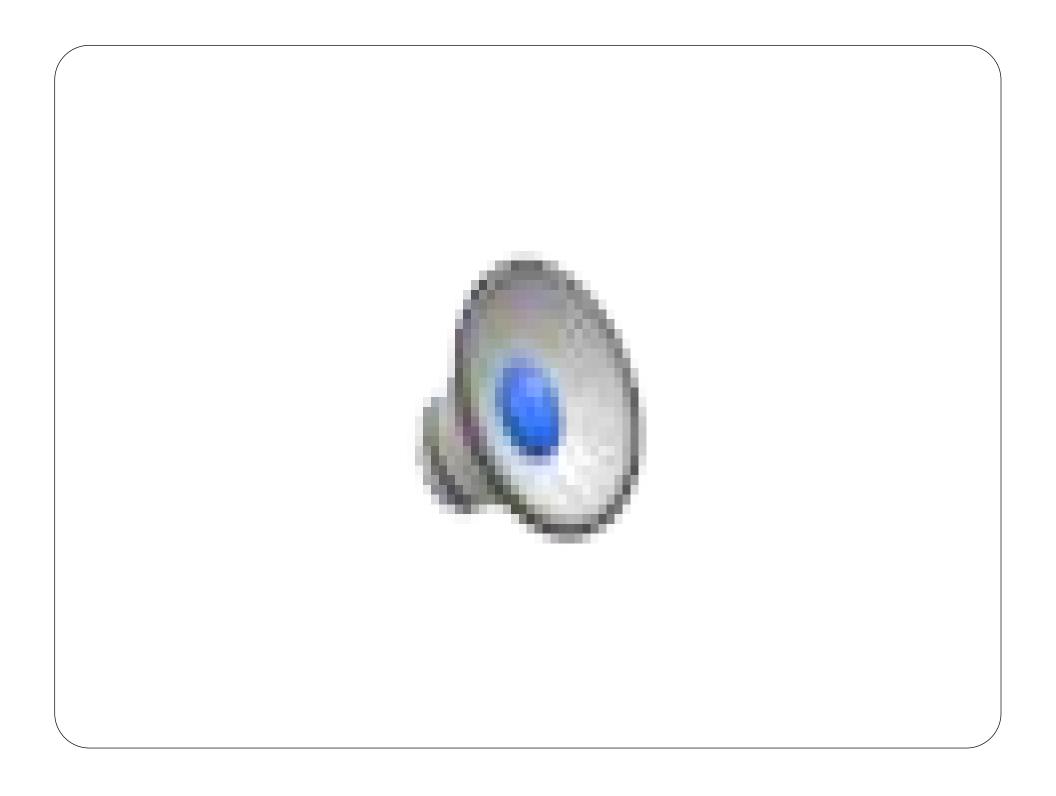
Braskie et al., Journal of Neuroscience, May 2012

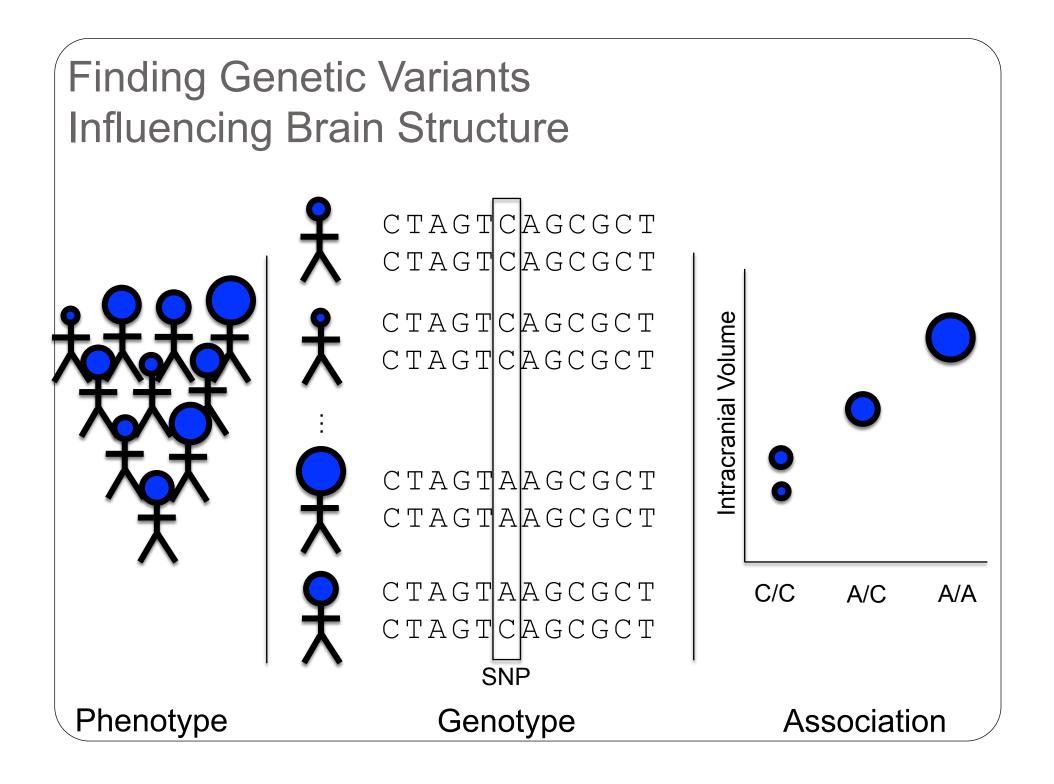
...*also found for BDNF* gene (N=455 people). This is a well-known growth factor gene. Has been associated with working memory.

Can we use these discoveries to **develop a genetic test to help predict your brain integrity? To some extent yes**. Use a **polygenic prediction model** based on all these SNPs. We developed a polygenic test that can **predict a small proportion of the variance in brain integrity** (7 SNPs) and rate of brain loss (empower drug trials)


Kohannim O, et al. Predicting white matter integrity from multiple common genetic variants. Neuropsychopharmacology 2012, in press.


Brain measures are arguably* a good target for genetic analysis – may be easier to find genetic variants that directly affect the brain

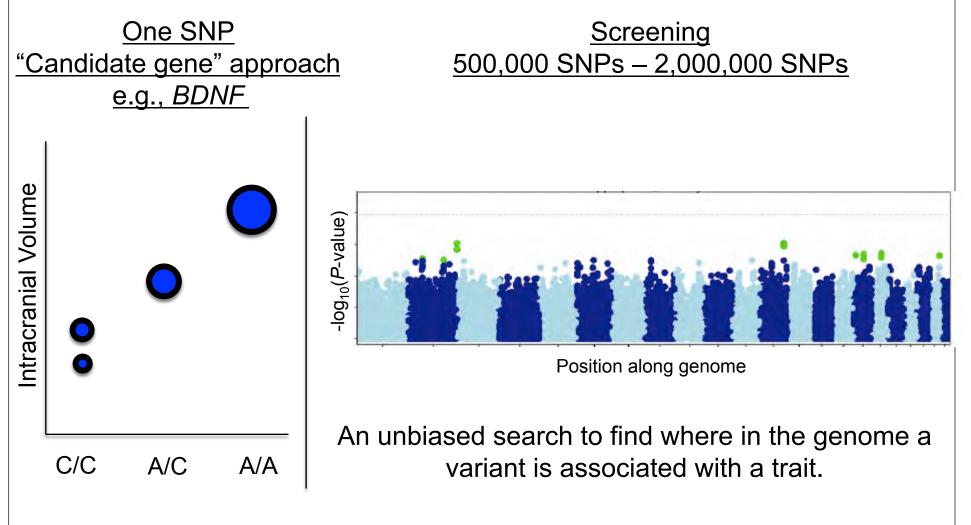

difficult


May require 10,000-30,000 people e.g., the Psychiatric Genetics Consortium studies

Gene variants may affect brain measures directly, many brain measures relate to disease status, they can be precisely and reproducibly measured

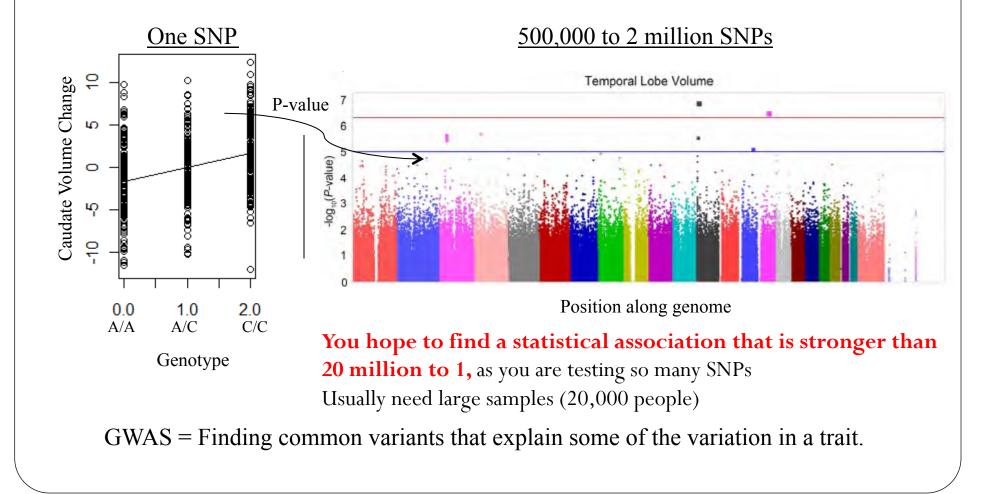

What do genome wide association studies (GWAS) try to find?

- common genetic *variants* related to a brain measure, or a disease,

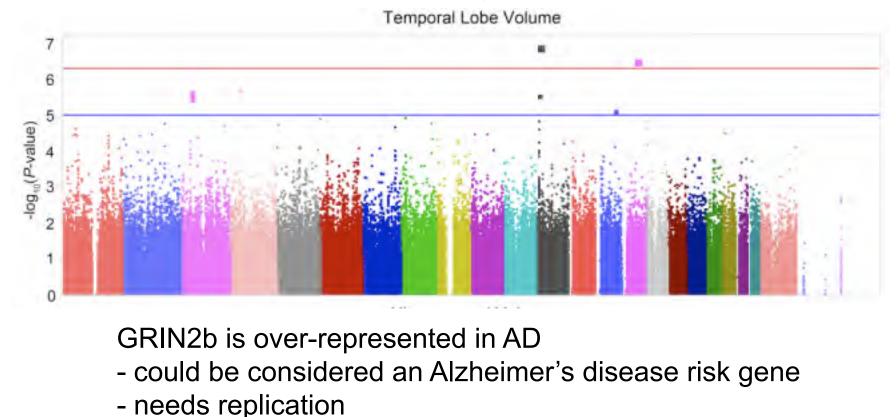

or a trait such as obesity, found by searching the genome

99.9% of DNA is the same for all people - DNA **variation** causes changes in height, personality, predisposition to disease, and brain structure.

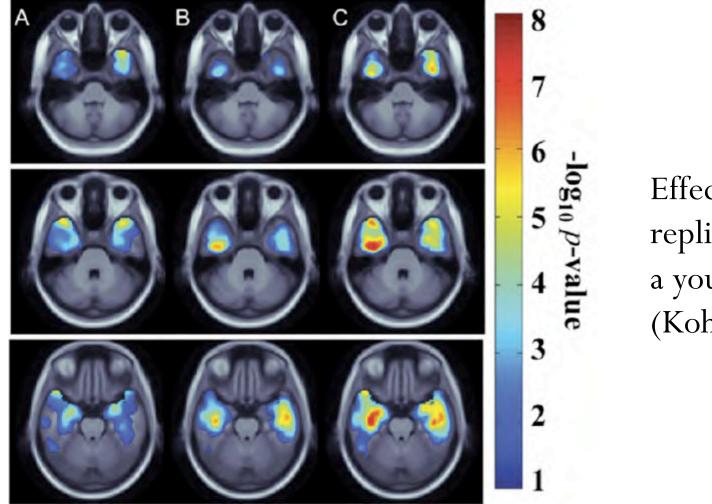
One type of variation is a single nucleotide polymorphism (SNP) - Single letter change in the DNA code



Genome-wide Association Study

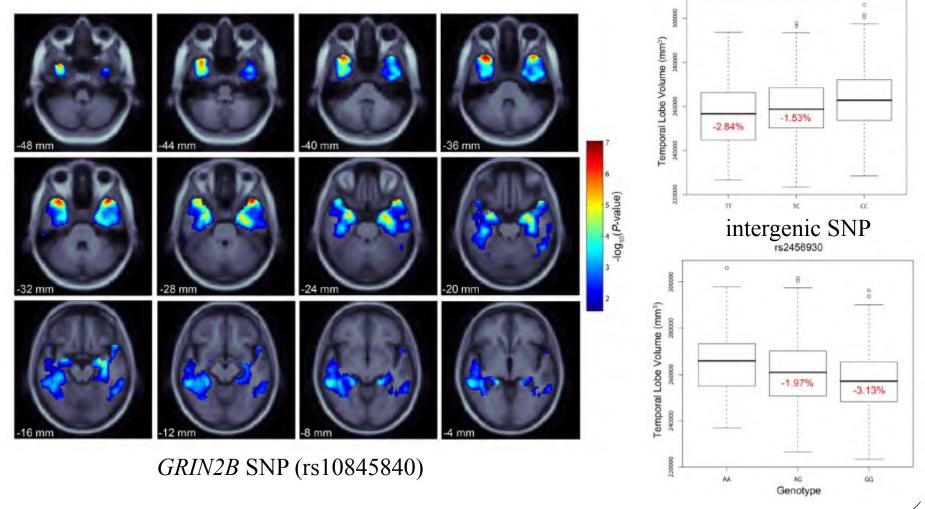

Genome-wide association study

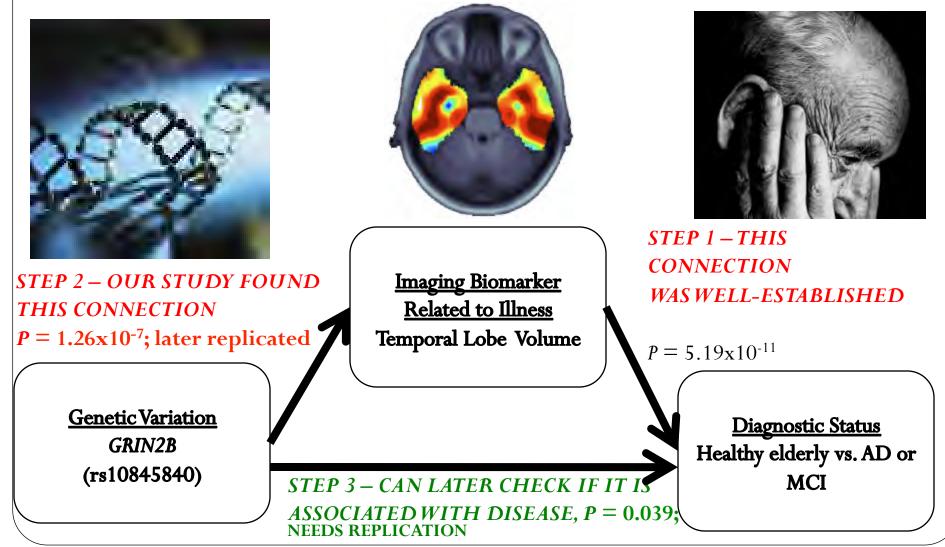
Which genomic variants are associated with a trait?


First Genome-Wide Screens of Brain Images (2009-2010)

GRIN2b genetic variant was suggestively associated with 2.8% temporal lobe volume deficit; this was later replicated in a non-overlapping cohort The NMDA-type glutamate receptor is a target of memantine therapy; first detected with GWAS in **N=742 subjects from the ADNI cohort**

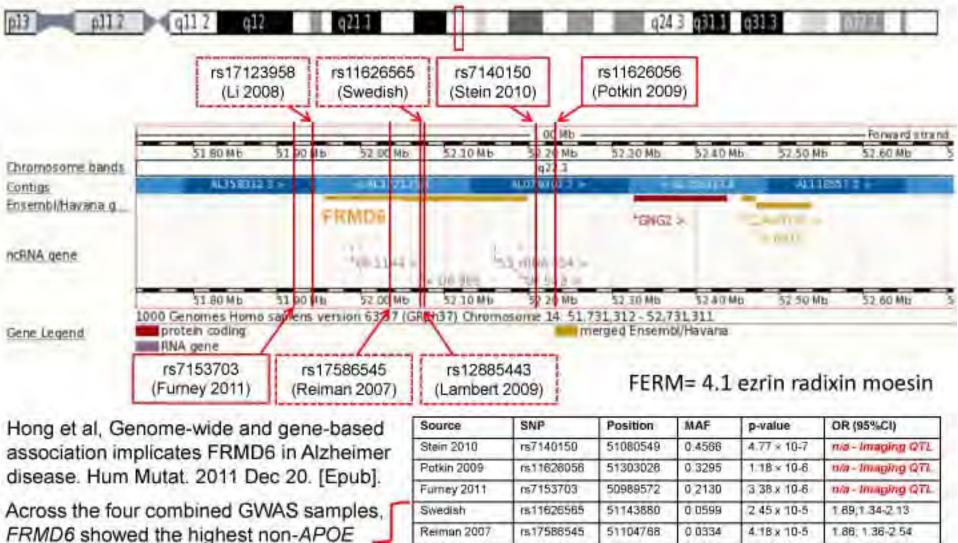
Jason L. Stein¹, Xue Hua PhD¹, Jonathan H. Morra PhD¹, Suh Lee¹, April J. Ho¹, Alex D. Leow MD PhD^{1,2}, Arthur W. Toga PhD¹, Jae Hoon Sul³, Hyun Min Kang⁴, Eleazar Eskin PhD^{3,5}, Andrew J. Saykin PsyD⁶, Li Shen PhD⁶, Tatiana Foroud PhD⁷, Nathan Pankratz⁷, Matthew J. Huentelman PhD⁸, David W. Craig PhD⁸, Jill D. Gerber⁸, April Allen⁸, Jason J. Corneveaux⁸, Dietrich A. Stephan⁸, Jennifer Webster⁸, Bryan M. DeChairo PhD⁹, Steven G. Potkin MD¹⁰, Clifford R. Jack Jr MD¹¹, Michael W. Weiner MD^{12,13}, Paul M. Thompson PhD^{1,*}, and the ADNI (2010). Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer's Disease, NeuroImage 2010.


GRIN2b (glutamate receptor) genetic variant associates with brain volume in these regions; TT carriers have 2.8% more temporal lobe atrophy


Effect was later replicated in a younger cohort (Kohannim 2011)

Jason L. Stein¹, Xue Hua PhD¹, Jonathan H. Morra PhD¹, Suh Lee¹, April J. Ho¹, Alex D. Leow MD PhD^{1,2}, Arthur W. Toga PhD¹, Jae Hoon Sul³, Hyun Min Kang⁴, Eleazar Eskin PhD^{3,5}, Andrew J. Saykin PsyD⁶, Li Shen PhD⁶, Tatiana Foroud PhD⁷, Nathan Pankratz⁷, Matthew J. Huentelman PhD⁸, David W. Craig PhD⁸, Jill D. Gerber⁸, April Allen⁸, Jason J. Corneveaux⁸, Dietrich A. Stephan⁸, Jennifer Webster⁸, Bryan M. DeChairo PhD⁹, Steven G. Potkin MD¹⁰, Clifford R. Jack Jr MD¹¹, Michael W. Weiner MD^{12,13}, Paul M. Thompson PhD^{1,*}, and the ADNI (2010). Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer's Disease, NeuroImage, 2010.

Effect of carrying adverse SNP is ~1.4% lower volume per allele, same as ENIGMA's top SNP GRIN2B SNP rs10845840



Brain measures are a good target for genetic analysis – common DNA variation affects them and they relate to disease status

FRMD6: FERM domain-containing protein 6 Detected in 3 imaging genetics studies (2 ADNI; 1 ADNI/ANM) and validated by case/control GWAS

Chr 14q22.1

LI 2008

Lambert 2009

rs17123958

1512885443

51011874

51145403

0 1040

0:1789

7.59 × 10-5

5.34 x 10-4

2 12:1.38-3 24

1.16:1.07-1.25

signal: $p = 2.6 \times 10-14$).

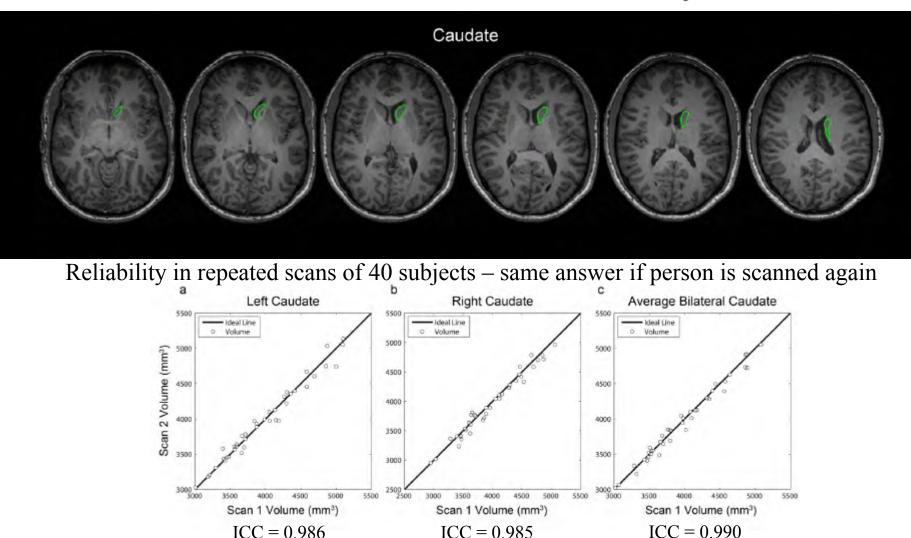
Saykin, 12/27/11

FRMD6 gene story - Imaging Genetics can take the lead in uncovering disease-relevant genes

Novel candidate gene for AD First recognized in several imaging genetics analyses - later replicated in a large case/control cohort - and by reanalysis of prior case/control GWAS data.

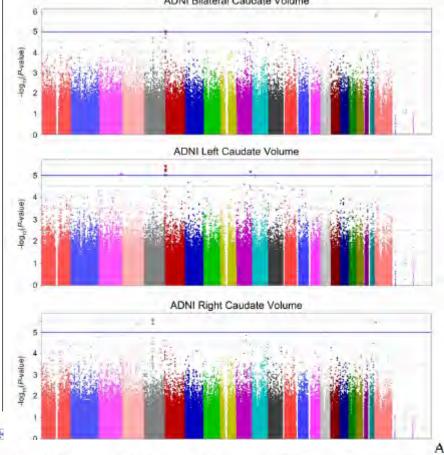
Furney et al phenotype was ventricular volume Potkin et al was local hippocampal volume Stein et al was a voxel-based map of regional brain volume differences.

Odds ratios for *FRMD6* SNPs from the 4 GWAS studies in Hong et al range from 1.16 to 2.12 - larger than most top AD genes (*Nature Genetics*, April 2011) But still well below *APOE* (OR \sim 3).


> *FRMD6* appears promising as a replicated candidate gene. Little data so far on its biological function.

Jason L. Stein¹, Xue Hua PhD¹, Jonathan H. Morra PhD¹, Suh Lee¹, April J. Ho¹, Alex D. Leow MD PhD^{1,2}, Arthur W. Toga PhD¹, Jae Hoon Sul³, Hyun Min Kang⁴, Eleazar Eskin PhD^{3,5}, Andrew J. Saykin PsyD⁶, Li Shen PhD⁶, Tatiana Foroud PhD⁷, Nathan Pankratz⁷, Matthew J. Huentelman PhD⁸, David W. Craig PhD⁸, Jill D. Gerber⁸, April Allen⁸, Jason J. Corneveaux⁸, Dietrich A. Stephan⁸, Jennifer Webster⁸, Bryan M. DeChairo PhD⁹, Steven G. Potkin MD¹⁰, Clifford R. Jack Jr MD¹¹, Michael W. Weiner MD^{12,13}, Paul M. Thompson PhD^{1,*}, and the ADNI (2010). Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer's Disease, NeuroImage 2010.

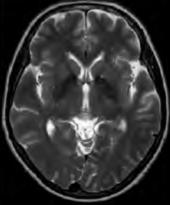
Beginnings of ENIGMA - 2 large populations; discover genes in one, then see if they replicate in the other


	Study Name	Subjects	Genetic Information	Age/Sex Distribution
ADNI	Alzheimer's Disease NeuroImaging Initiative (ADNI)	734 healthy elderly, MCI, and AD	Illumina 610K GWAS	75.5 ± 6.8 years 432 male/302 female
Q-Twin	Brisbane Adolescent/ Young Adult Longitudinal Twin Study (BLTS)	464 young healthy MZ/DZ twins (239 families)	Illumina 610K GWAS	23.7 ± 2.1 years 188 male/276 female

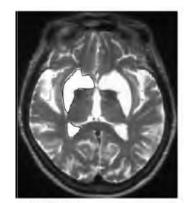
Finding the Caudate Nucleus Automatically in 1198 MRI Scans – we can measure its volume reliably

Stein JL, Derrek P. Hibar¹, Sarah K. Madsen¹, Mathew Khamis¹, Katie L. McMahon², Greig I. de Zubicaray³, Narelle K. Hansell⁴, Grant W. Montgomery⁴, Nicholas G. Martin⁴, Margaret J. Wright⁴, Andrew J. Saykin⁵, Clifford R. Jack, Jr⁶, Michael W. Weiner^{7,8}, Arthur W. Toga¹, Paul M. Thompson^{1,} and the Alzheimer's Disease Neuroimaging Initiative* (2011). **Discovery and replication of dopamine-related gene effects on caudate volume in** young and elderly populations (N=1198) using genome-wide search, *Molecular Psychiatry*, 16: 927-937, September 2011.

Caudate association peak in *PDE8B* gene, replicates in 2nd young cohort (N=1198 people total)

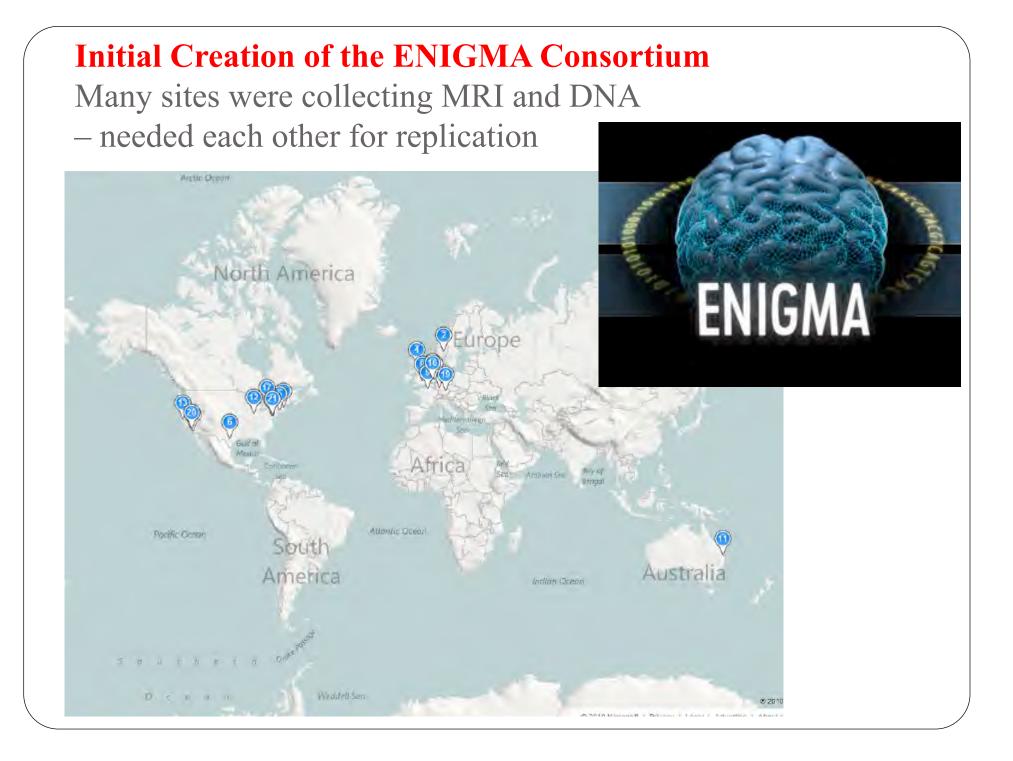


Same Gene implicated in Autosomal Dominant -Striatal Degeneration - Very severe effect on Caudate volume

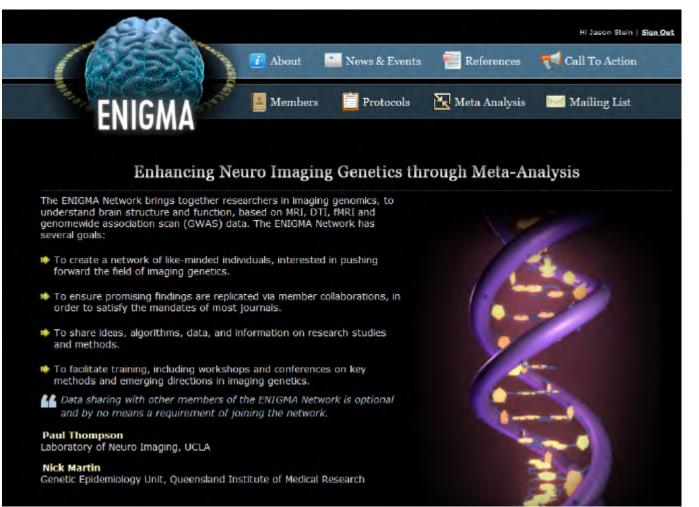

-In healthy people, affects Caudate volume

-Phosphodiesterase = key protein in the dopamine signaling cascade

-still not GW-significant in any one cohort alone



Control



ADSD patient

					ADNI					BLTS						
Chr	SNP	Position	Gene	A1	Freq	N	β	SE	Р	P diag	A1	Freq	N	β	SE	P
Righ	nt Caudate															
5	rs153030	76817227	WDR41	A	0.499	731	147.4	31.0	2.36x10-6	6.00x10 ⁻⁶	C	0.524	462	-83.2	33.2	0.012
										6.00x10 ⁻⁶						
5	rs335636	76760355	PDE8B, WDR41	A	0.500	733	143.8	30.9	3.90x10-6	8.00x10-6	G	0.525	464	-81.1	33.0	0.014
4	rs1299288	132606407	0.010	G	0.230	734	-169.4	36.6	4.43x10-6	5.00x10-6	Т	0.770	464	-42.0	39.3	0.286

Replication through collaboration http://ENIGMA.loni.ucla.edu

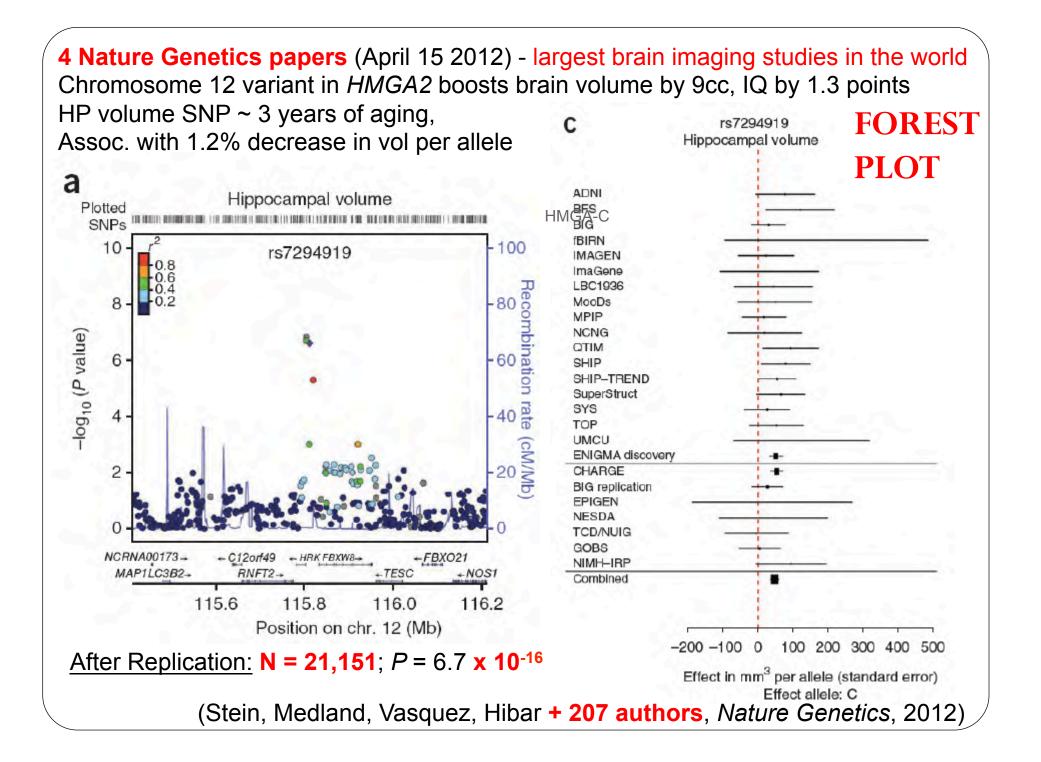
> >200 scientists, 12 countries; must have DNA and MRI scans
 > Many new members joining, several Working Groups

Meta-Analysis – each site uploads its genome-wide scans - see if any of 500,000+ common genetic variants affect brain volume, brain integrity on DTI, brain amyloid measured with PET - each site's "vote" depends on how many subjects they assessed

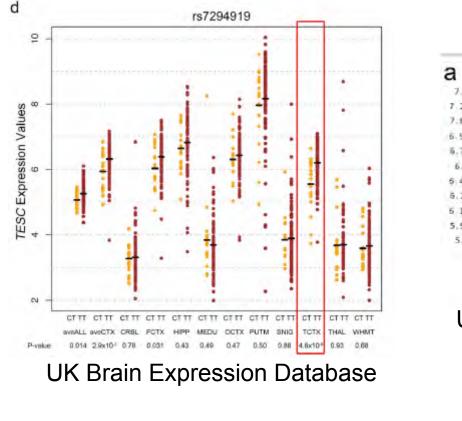
Submissions

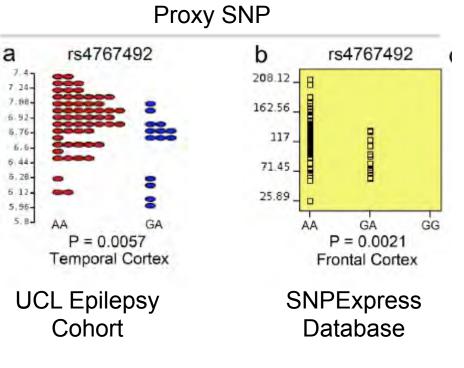
Group ID	Project Name	Contact Person	Meta-Analysis	File Status
44	GOBS	John Blangero	INFO	STATUS
78	Max Planck Institute of Psychiatry, Munich	Philipp Sämann	INFO	STATUS
83	MGH / Genomic SuperStructure	Randy Buckner / Jordan Smoller	INFO	STATUS
88	Imagen	Roberto Toro	INFO	STATUS
94	QTwin	Jason Stein/Sarah Medland	INFO	STATUS
101	Norwegian Cognitive Neurogenetics	Thomas Espeseth	INFO	STATUS
105	Roel Ophof f- UCLA/UMC Utrecht	Kristel van Eijk	INFO	STATUS
108	ADNI	Li Shen	INFO	STATUS
113	LBC1936	Lorna Lopez	INFO	STATUS
114	BIG Study	Barbara Franke/Alejandro Arias	INFO	STATUS
148	NESDA	Saskia Woudstra	INFO	STATUS
149	MooDS	Andreas Meyer-Lindenberg	INFO	STATUS
151	fBIRN	Theo G.M. van Erp	INFO	STATUS
161	Thematic Organized Psychosis Research (TOP)	Ole Andreassen	INFO	STATUS
164	NIMH-IRP	Francis McMahon	INFO	STATUS
Total Sub	ject Tally			
N w/ Patier		W w/o Patients		
6,496		4,716		

Genetic Imputation – allows ENIGMA members to compare and combine their data


Differences in genotyping chips used require imputation to the same reference sample so each group is studying the same SNPs.

Imputation is similar to resampling in imaging – put everything on the same grid ENIGMA1 – HapMap reference panel ENIGMA2 – "1000 Genomes" (1KG) reference panel; Use imputation protocol on ENIGMA website


Sites had to measure regional brain volumes from MRI with validated, automated software programs (e.g., Freesurfer, FSL; some sites ran both; there was extensive QC, outliers left in if visually verified)


C. Participation	Hippod	ampus	Brain Vo	olume	ICV	la ser a ser
Study Name	r	N	r	N	r	N
ADNI	0.87	657	0.67	657	0.94	657
BFS	0.84	215	0.84	215	0.82	215
BIG	0.72	2180	0.97	927	0.72	927
fBIRN	0.70	78	0.75	78	0.87	78
IMAGEN	0.72	518	0.93	518	0.91	518
MooDS	0.72	137	N/A	N/A	N/A	N/A
NCNG	0.63	327	0.96	327	0.97	327
QTIM	0.71	386	0.93	386	0.73	386
SHIP	0.86	24	0.96	24	0.93	24
SHIP-TREND	0.68	24	0.98	24	0.91	24
TOP	0.71	419	0.97	419	0.94	419
UMCU	0.61	181	N/A	N/A	N/A	N/A
EPIGEN	0.78	203	N/A	N/A	N/A	N/A
GOBS	0.76	724	0.99	726	0.94	726
NIMH-IRP	0.53	20	0.91	20	0.94	20
COMBINED	0.75	6093	0.95	4321	0.90	4321

The correlation between software programs is comparable to human interrater variability (ICC=0.75-0.95); important in deciding which structures to prioritize (Stein, Medland, Vasquez, Hibar, et al., *Nature Genetics*, 2012)

The hippocampal volume SNP (or the closest available proxy) was associated with differences in the expression of a nearby gene, *TESC, in brain tissue*

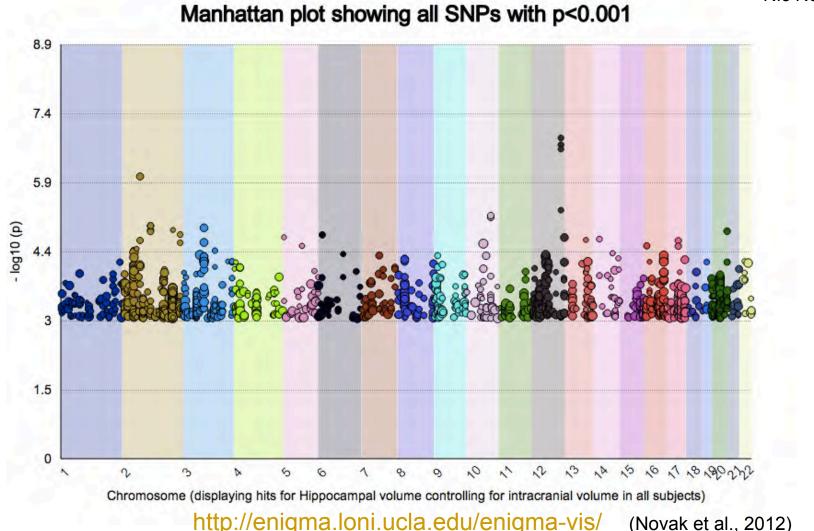
(Stein, Medland, Vasquez, Hibar + 207 authors, Nature Genetics, 2012)

Previously Studied Candidate Genes

	SNP		べんもん
Gene	(proxy)	P-value	Het. P-value
Full Discovery	sample - including patients		
BDNF	rs6265	0.969	0.375
TOMM40	rs2075650	0.034	2.31x10 ⁻⁵
CLU	rs11136000	0.287	0.186
PICALM	rs3851179	0.079	0.035
ZNF804A	rs1344706	0.325	0.908
COMT	rs4680 rs821616	0.211	0.827
DISC1	(rs1754606 r ² =1.00) rs35753505	0.940	0.240
NRG1	(rs12681411 r ² =0.835)	0.636	0.116
DTNBP1	rs1011313 rs1018381	0.416	0.832
DTNBP1	(rs875463 r ² =1.00)	0.882	0.431

Previously studied candidate polymorphisms **showed little association** to hippocampal volume; Het. P-value – tests for heterogeneity of allele frequency across cohorts; some cohorts include AD patients

HMGA2 gene, Brain Size, and IQ



- Carriers of the C allele of rs10784502 in the HMGA2 gene had 0.5% bigger intracranial volume (9 cc, or 2 teaspoons)
- Also had 1.3 points higher full-scale IQ per allele (N=1642; Beta(SE)=1.29(0.47); P=0.0073).
- This genetic variant is associated with height
- Has a known role in cancer cell proliferation

This result was quite widely reported (*New York Times, TIME Magazine*; 30 countries worldwide); needs to be replicated

ENIGMA-Vis

You can look up any genes or SNPs you are interested in; see if they associate with brain measures; psychiatric GWAS and mouse QTL researchers have had success with it (try it)

Nic Novak

ENIGMA Working Groups

Project Name

FNIGMA2

FNIGMA-DTI

ENIGMA-PIB

Summary

Subcortical Morphometry (caudate, amygdala, ...)

Diffusion Imaging Measures – integrity (FA, MD) of tracts, TBSS, anatomical connectivity, NxN connectomes

Amyloid PET based measures

FNIGMA-PGC How do psychiatric risk genes affect the brain? Do "brain genes" affect risk for SCZ, MDD, BPD, AUT, ADHD, ...

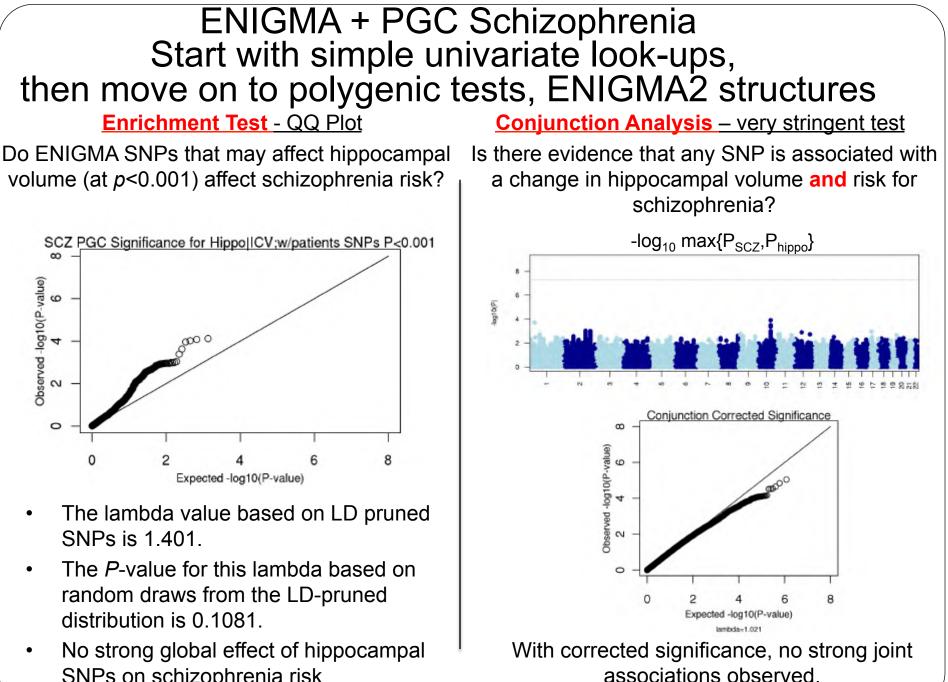
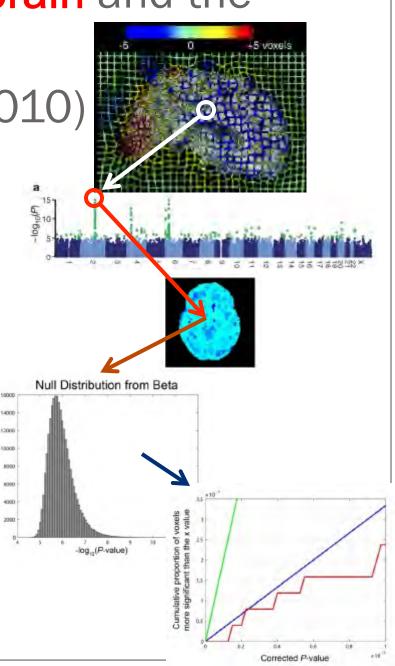

Stage

Image processing and new 1KG genetic imputation protocols now completed

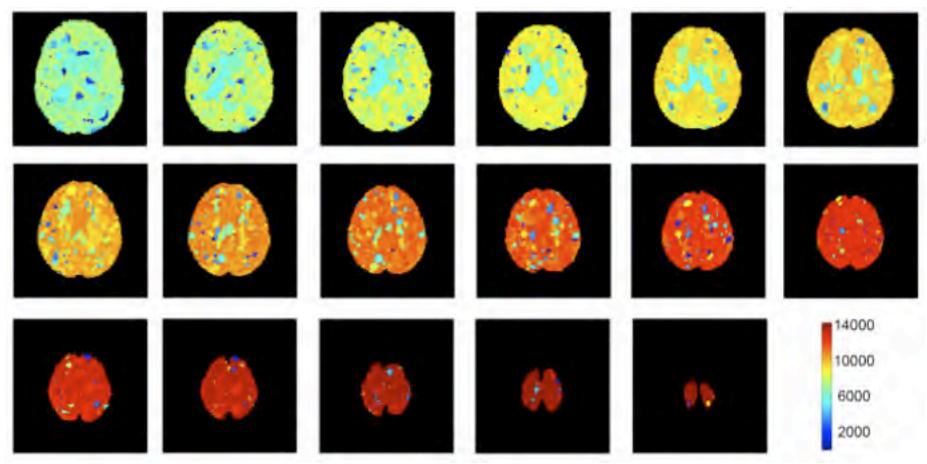
Phenotype harmonization; N=4000+; many cohorts joining; Protocol being beta-tested at 6 sites (Kochunov et al., OHBM 2012)

Just began – 4 large cohorts with PIB (AIBL in Australia, U. Pittsburgh, ADNI, [Wash U]) and several smaller ones

4-pronged approach: reciprocal look-up; statistical conjunction; enrichment; polygenic testing



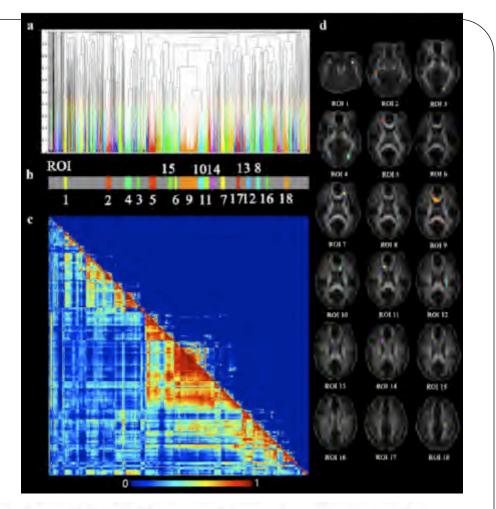
SNPs on schizophrenia risk


You can search the entire brain and the

genome at the same time: "Voxelwise" GWAS (Stein 2010)

- 1. Volume difference at each voxel relative to a template serves as phenotype
- 2. Scan the genome for associations at each brain location (each voxel)
- 3. Select only the most associated SNP at each voxel
- 4. Adjust *P*-values through an inverse beta transformation (max of N null uniform distributions)
- 5. Correct for multiple comparisons across voxels using FDR

Voxelwise Genome-Wide Association Study (vGWAS; 719 subjects) 545,871 SNPs x 252,408 voxels = 138 billion tests [10 days to run] Discovers Most Associated SNP at each Voxel

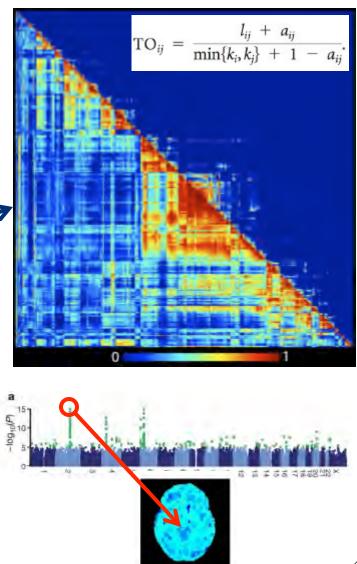

Discovered XKR4, PIP4K2A, CSMD2, CADPS2, and PIP3-E genes relevant to brain and cytoskeletal structure; some previously associated with psychiatric disease.

Jason L. Stein¹, Xue Hua PhD¹, Suh Lee¹, April J. Ho¹, Alex D. Leow MD PhD^{1,2}, Arthur W. Toga PhD¹, Andrew J. Saykin PsyD³, Li Shen PhD³, Tatiana Foroud PhD⁴, Nathan Pankratz⁴, Matthew J. Huentelman PhD⁵, David W. Craig PhD⁵, Jill D. Gerber⁵, April N. Allen⁵, Jason J. Corneveaux⁵, Bryan M. DeChairo PhD⁶, Steven G. Potkin MD⁷, Clifford R. Jack Jr MD⁸, Michael W. Weiner MD^{9,10}, Paul M. Thompson PhD^{1,*}, and the ADNI (2009). **Voxelwise Genome-Wide Association Study (vGWAS), NeuroImage 2010.** but Image-wide GWAS only tests one voxel at a time, as if they were totally independent

Overlooks coherent patterns of gene action in the image

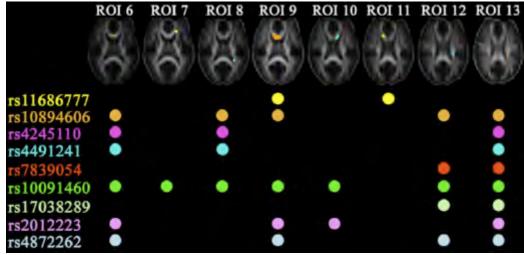
Want to Cluster Voxels with Common Genetic Influences

Boosts the Power of GWAS in Images (Chiang et al., J Neuroscience 2012)

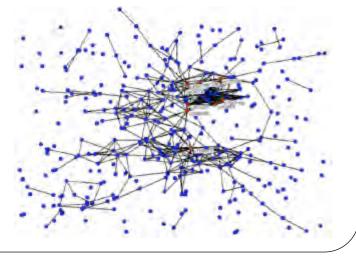

Gene Network Effects on Brain Microstructure and Intellectual Performance Identified in 472 Twins

Ming-Chang Chiang,^{1,2} Marina Barysheva,² Katie L. McMahon,³ Greig I. de Zubicaray,⁴ Kori Johnson,³ Grant W. Montgomery,⁵ Nicholas G. Martin,⁵ Arthur W. Toga,² Margaret J. Wright,⁵ Paul Shapshak,⁶ and Paul M. Thompson²

Cluster voxels based on their genetic correlation


- 1. In twin or family designs, we can estimate the **genetic correlation between any two traits**, e.g. brain size and IQ, i.e., there may be a correlation between the genetic factors affecting the 2 traits
- 2. Apply same logic to **pairs of voxels in an image** – is there any genetic correlation? (cross-twin, cross-trait method)
- 3. $R_{g}(x,y)$ gives very dense network; thin it down by transforming to Topological Overlap index network, TO(x,y) (Zhang & Horvath, 2005; better clusters)
- 4. Do hierarchical clustering of voxels with common genetic determination
- 5. Treat largest clusters as regions of interest
- 6. Run GWAS on these new ROIs
- 7. Much faster; does it also boost power?

4876x4876 matrix


Genetic clustering boosts GWAS power

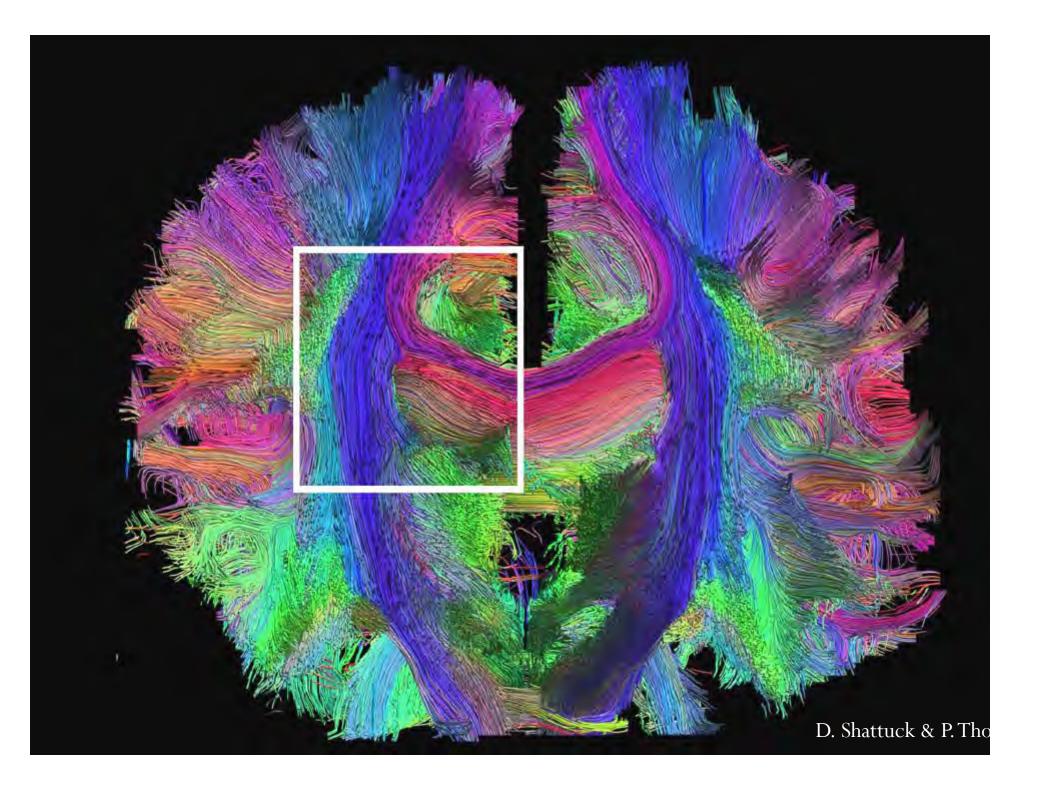
- 1. Many top hits now reach genome-wide significance (N=472) and replicate
- 2. Several SNPs affect multiple ROIs

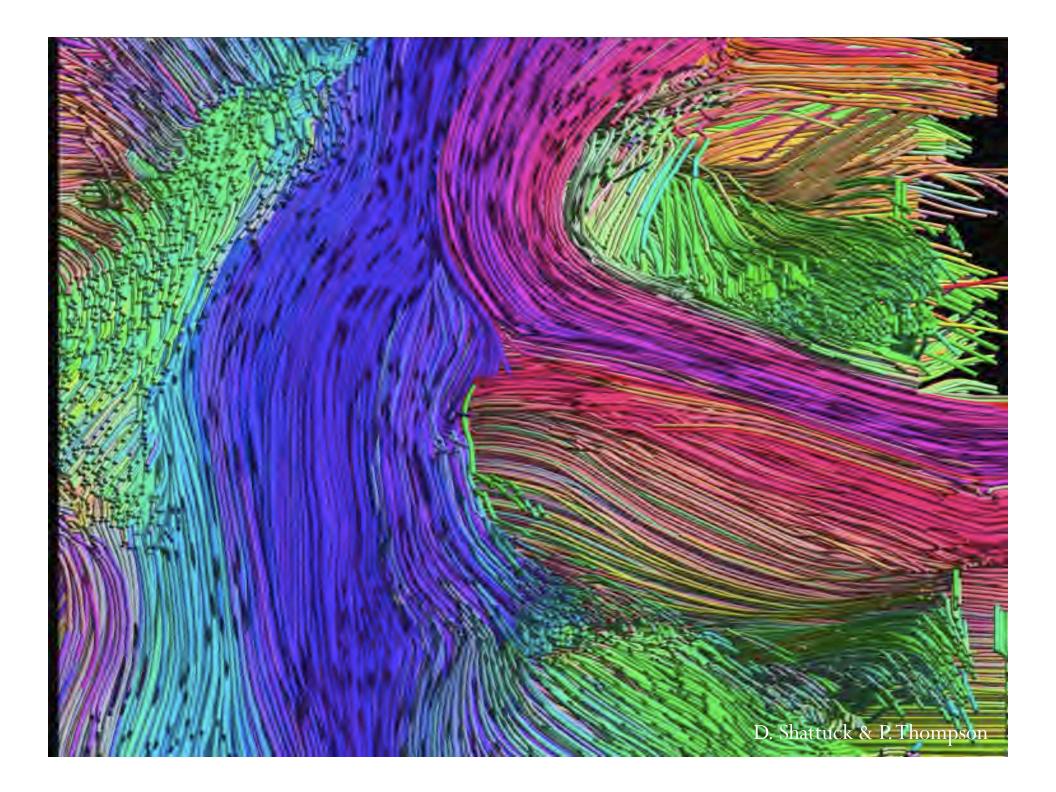
- 3. Can form a network of SNPs that affect similar ROIs
- 4. It has a small-world, scale-free topology

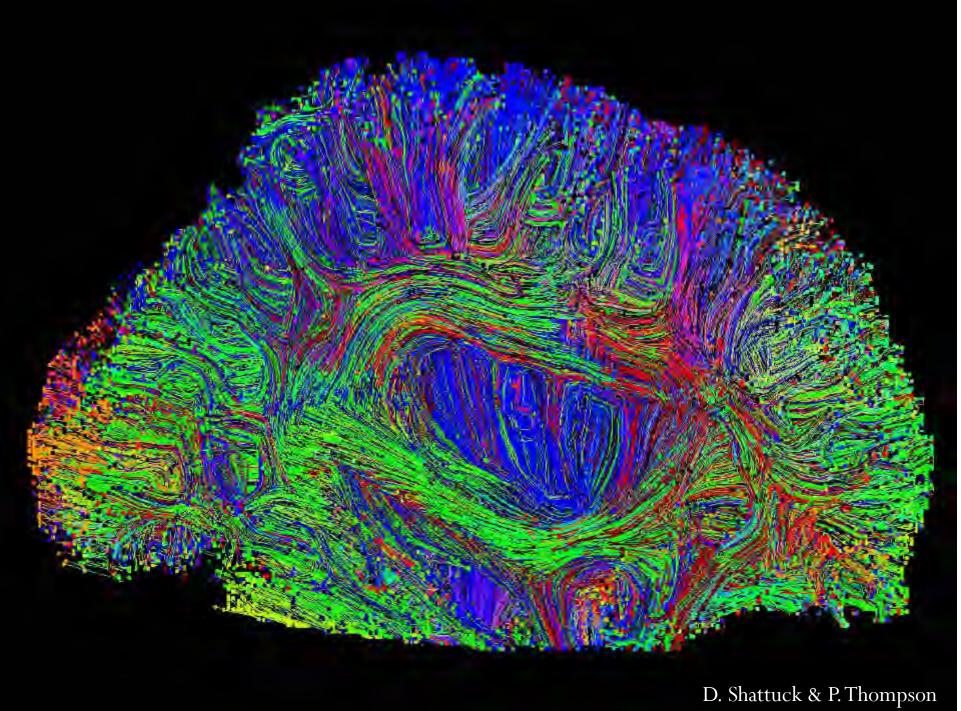
(for more, see Chiang et al., J. Neurosci., 2012)

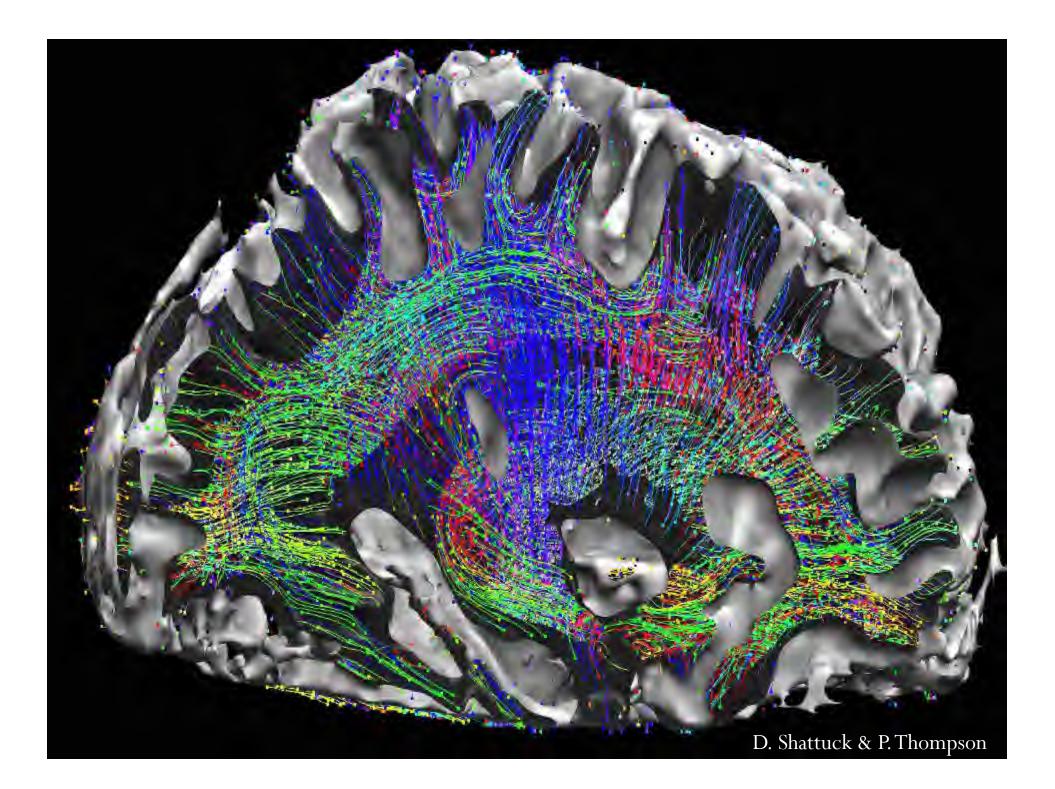
Genetic correlation between a blood biomarker and an image

1. Suppose you have a gene that affects a known blood or CSF biomarker, and you want to see if it also affects the brain, and if so, where

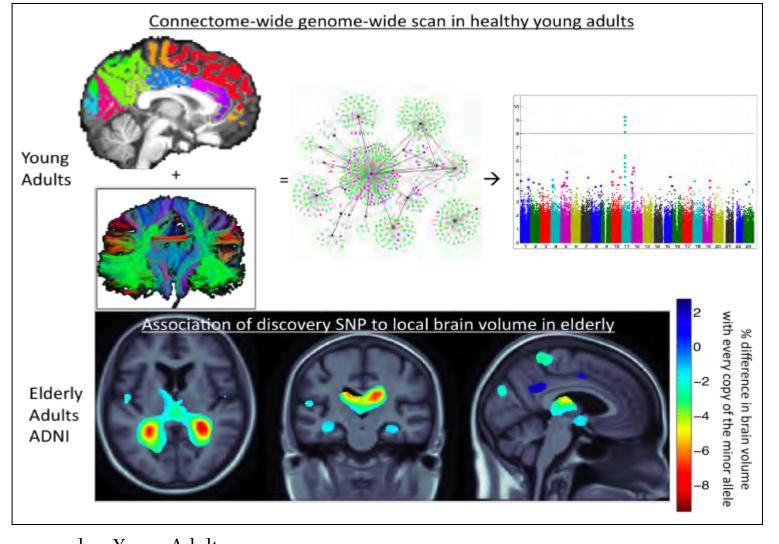

HFE gene -> transferrin levels in blood (buffers iron, vital for myelination)
MTHFR gene -> homocysteine levels in blood (causes atrophy)

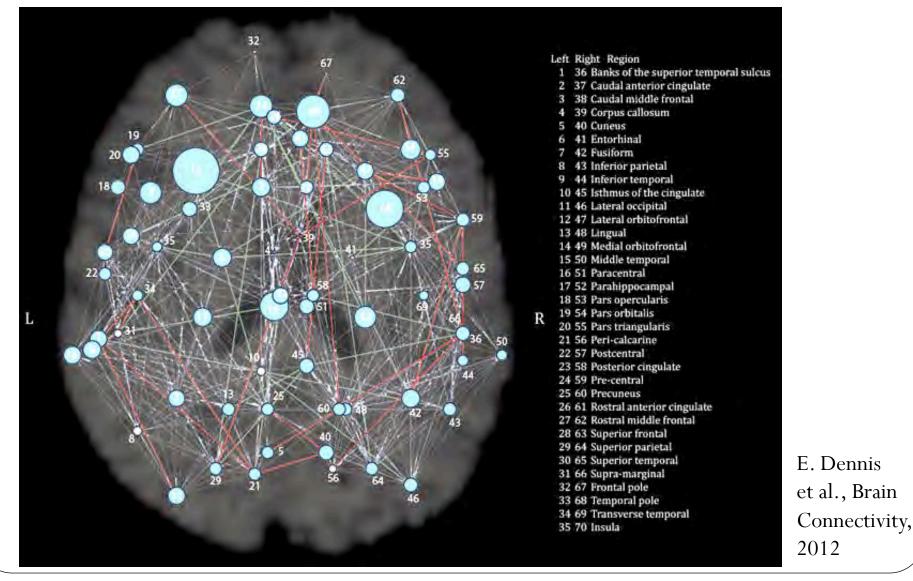

- 2. Find the parts of the brain that show genetic correlations with the blood measure (voxel-based cross-twin cross-trait association)
- 3. Test the SNP's association in just those regions of the brain, to boost power


(for more, see Jahanshad et al., *PNAS*, 2011; Rajagopalan et al., submitted)


Brain structure in healthy adults is related to serum transferrin and the H63D polymorphism in the HFE gene

Neda Jahanshad^{a,b}, Omid Kohannim^a, Derrek P. Hibar^a, Jason L. Stein^a, Katie L. McMahon^c, Greig I. de Zubicaray^d, Sarah E. Medland^e, Grant W. Montgomery^e, John B. Whitfield^e, Nicholas G. Martin^e, Margaret J. Wright^e, Arthur W. Toga^a, and Paul M. Thompson^{a,1}




Genome-Wide Screen of the Human Connectome discovers an Alzheimer risk gene (ENIGMA-DTI)

Discovery sample – Young Adults Replication sample – ADNI

Jahanshad/Thompson, under review

Autism Risk Gene linked to Differences in Brain Wiring CNTNAP2-CC Carriers have different networks Circles show hubs with different eccentricity (a measure of isolation; N=328 people)

Acknowledgments

Jason I, Stein^{e (17)}, Sateh E. Modland^{1,1,12}, Alexandro Arias Vasquez^{1,27,12}, Deerek P. Hiber⁽¹⁷⁾, Rudy E. Sentrad¹, Anderson M. Winklur^{k S}, Roberto Toro^(1,12), Raija Appd^{13,38}, Richard Baris es¹⁵, Orjan Bergmann¹⁶, Manim Bernard¹⁵, Andrew & Brown^{16,16}, Dara M Caumur¹⁹, M Mailar Chakrevarcy¹⁰, Andrew Christoforson^{15,10}, Martin Domin⁴⁴, Oliver Grimm², Marisa Rollinthead^{26,27}, Avrant Holines⁴⁶, Georg Homuth²⁶, louke for thettenge ", Camilla Longan³¹, Lorsse M Lopes^{10,11}, Needle & Honself, Kristy S Haram^{1,12}. Sungeon Kon^{15,16}, Contado Lon¹⁰, Pfal H Lee^{40,57}, Xiuman Leu^{15,10}, Eva Loth¹⁰, Anbarasu Londonomy¹⁰, Morten Mattengalal^{10,47}, Schadaar Mohola⁴¹, Smana Muford Manoga^{30,42,40}, Neargeik Nim^{11,14}, Alliovi, C. Nugeur⁽²⁾, Carol O'Brien⁴⁻²⁷, Marsina Paymeyer⁽²⁾, Benno Pitrz¹⁰, Adaikalavan Ramasamy²¹ hirod Raymanam²⁴, Mara Ripploma²⁺², Shaanon C Risicher²⁵, J Compet Rodder²¹, Omena J Rose^{45,17} Mina Ustan³⁴, Li Shen^{51,35}, Lumia Sprooten⁴⁶, Eric Strengman^{35,36}, Alexander Jesmer³⁶, Daniah Dabran³⁴⁷⁷, by an a former³⁴, Kronel van Lük^{19,26}, Then G M van Erp²⁶, Maria-lose van Inf²⁶⁻⁰¹; Keikerona Weithild¹⁵, Christians Well¹⁰ Soukis Woodstro¹², Andre Aleman¹¹, Soud Allmann²⁴, Laure Almasy¹⁴, Elinaketh B Bloder¹¹ David L. Brohmen¹⁰, Reta M Centor⁴⁶, Melume A Caricus⁴⁰, Aiden Corron^{46,47}, Michael L Zuch⁴⁴ harms F.Curran⁴⁴, Guil Davies¹⁰, Marsin A A de Almeida⁴⁴, Norman Delany^{45,46}, Chandal Deporall⁴⁵, Ravi Duggirala⁶¹, Thumes D Dyer¹⁰, Sunanne Crk¹¹, teven Fagerneys¹⁰, Peter T Finc¹⁰, Nebun B Freimer¹¹ Michael Coll^{96,47}, Harold H H Görnog⁸⁴, Donold J Hagler¹⁰, David Hochn¹⁰, Florian Holshoer¹⁰ Startine Hoogman 17787, Norbert Houten", Noda Jahamstud¹, Matthew Pholmoon¹⁴, Oalla Kasperavicione¹⁷ Tack W. Keni Jr⁴⁰, Peter Kitchunny^{10,94}, Jack J. Landariter⁴⁰, Mephien M. Lawrie⁴⁰, David C. Liewald⁴⁰ Repér Mand117, Mar Matarin, 7 Manuel Malthemen 25-27, Iya Mitterwald 7, Toprid Melle 1629, Frie F Musel 91. Thomas W. Mühleisen^{75,39}, Marthias Naude⁴⁰, Marleus M. Näthen^{257,41}, Rane L. Obvera⁴⁶, Massume Pandollo⁴⁷, G Bruce Piles¹⁷, Balt Pale²⁴, Ivar Samvang^{16,00}, (Organi E Kanterne¹⁰⁹, Marcalla Bietichel²², Indone I, Bulliman¹ Natific A Bryle^(0,034) Dan Rojest u⁽²⁾ Jonathan Sevitz^(0,07) Hugo G Schmerk⁽²⁾, Knut Schnell^(0,07) Nina Seiferth¹¹ Colin Smith²⁰, Vidar M Stean^{22,25}, Marin C Valdes Herrounder ^{10,17,10}, Martin Van den Herro¹¹¹ Nic I van der Wee⁵⁰⁴⁰, Neeltie F.M. Van Haren¹⁷, Jorns A.Velmar²⁰, Henry Voltae²⁰, Bobert Walker²⁰, Lact I Westlye¹⁰, Christopher D Whelan⁴⁰, Ingrit Agarta^{20,47}, Dorret I Bournena²⁰, Förnpiero L Catallori¹⁰ Anders M Dule^{21,26}, Seljan Djurovia^{20,47}, Wayne C Drewis ^{40,47}, Peter Hagourt^{15,12}, Jerpiny Hall⁴⁰, Andreas Heima³¹, Chillord R Jack 6²⁴, Tatiana M Foroud^{34,95}, Stephanie Le Hellard^{22,23}, Fabio Macriaedl²⁴, Grant W Montgomery", Jean Bapticle Poline,", David J. Protence, 567, Sanay M Samilys, 7, John M Stan, 31-7, Jossika Susanann¹⁰, Arthur W. Tugal, Dick J. Voltman⁵¹, Henrik Walter ^{41,40}, Michael W. Weiner^{161,30} the Alpheumer's Disease Neuroimsoging Institutive (ADNI)⁴⁰³ EPICEN Consertion⁴⁰⁴ IMAGEN Consertion⁴⁰⁴ Seguenay Youth Study Group (5Y5100, Joshua C. Ku¹⁰⁴, M. Arlan Ikram¹⁰⁷⁻¹⁰⁷, Albert V. Smith^{101,109} Vilmundur Gudnason^{806,00}, Christophe Taonzin^(10,11), Meike W Versone¹⁰⁹⁻⁰⁷, Lauore I Lauver¹¹⁵, Charles Da Carll^{(1,1)17}, Sudha Seshader^{(1,1)16}, Colorita for Heart and Agous Romand Lie Lenionin Epidemiology (CI(ARGE) Consorting⁽⁰⁾¹, Ole A Andrease a^{10,29}, Liana G Apostolicus^{17,27}, Mark T Bartin^{(16,12)6,107}, John Mangero¹⁶, Hands Beinner³, Rondy I, Brickner^{40,27,27,46}, Soen Cadion^{-17,4,19}, Communi Longoola^{11,110}, Greig I de Zubicarae⁴⁶, Ian i Dears^{30,1}), Gary Donohoe⁴⁶⁴⁷, Eco I C de Geor²¹, thomas I spescili^{4646,101}, Guilten bernanden 2021, David C Glating, Hans Förnhet 1911, Julin Hanty 2011 üleke E Hahlunft Pal24 Mark lenkinson¹²¹, Bene S Kahn¹⁵, Colm McDonald²⁰, Andrew M Mchanada¹⁰, Francis J Mi Maham³ Katis L McMahon 124 Andreas Meyee Lindenberg25 Derek W Morris^{46,17} Herrram Willer Mehook ** Thomas F Nichola (2017, Rod A Ophola) 505, Tomas Paus?), Edenka Pausoval?, Brands W Pename?"" Steven & Potka⁵⁴, Phillip & Sanano¹⁰, Andrea J Saykin^{11,51,05}, Conster ¹-channon¹⁰, Jordan W Jonether^{10,7} Joannas M. Wardten That d, Michael F. Wesle", Nuclinia Cr. Martin 2179, Harbara Leanta - 7198, Manuarer D Wright 2199 & Paul M Thompson^{1,12} for the Enhancing Neuro Imaging Genetics through Meth-Analysis (UNR) MA/Lon-original¹⁴

207 co-authors and the 21,151* participants Funding agencies in U.S., Australia, Europe *Thanks to CHARGE (S. Seshadri et al.) <u>Working Groups:</u> ENIGMA1, ENIGMA2, ENIGMA-DTI, ENIGMA-PIB, ENIGMA-PGC, ...

Jason Stein UCLA

Derrek Hibar Neda Jahanshad UCLA UCLA

Sarah Medland Alejandro Arias Vasquez Queensland Inst. Med. Radboud University, The Research, Australia Netherlands

