Bayesian Statistics in Neuroimaging

Martin Lindquist
Department of Biostatistics
Johns Hopkins University

Bayesian Inference

• Most statistical methods covered in introductory statistics courses are frequentist (or classical) methods.

• Bayesian inference is another approach that provides a somewhat different perspective.

• In the past decade Bayesian methods have received a great deal of attention in fMRI research.

Classical vs Bayesian Approach

• The frequentist (or classical) point of view:
 – Probability refers to limiting relative frequencies.

 – Parameters are fixed unknown constants. Because they do not fluctuate, no useful probability statements can be made about them.

 – Statistical procedures should be designed to have well-defined long run frequency properties.

Classical vs Bayesian Approach

• The Bayesian point of view:
 – Probabilities describe a degree of belief.

 – Probability statements can be made about parameters, even though they are fixed constants.

 – Inferences are made about a parameter \(\theta \) by producing a probability distribution for it.
The Bayesian Method

• Choose a probability density $p(\theta)$, the prior distribution, that expresses our beliefs about a parameter θ before we see any data.

• Choose a statistical model $p(y|\theta)$, the likelihood, that reflects our belief about y given θ.

• After observing y, update our beliefs and calculate the posterior distribution $p(\theta|y)$.

Prior Distribution

• In the Bayesian approach θ can be described by a probability distribution. (Prior Distribution)

• The prior distribution is a subjective distribution, based on the experimenter’s belief and is formulated prior to viewing the data.

• In our example assume $p(\theta) \sim N(\theta_0, \sigma_0^2)$

Example

• Suppose we observe a sequence of observations y_1, \ldots, y_n from a $N(\mu, \sigma^2)$ distribution, where μ is unknown and σ^2 known.

Assume μ is the task-induced change in brain activity and y_i the equivalent contrast for subject i.

Likelihood: $p(y_1, \ldots, y_n|\mu) \sim N(\mu, \sigma^2)$

• We are interested in estimating the parameter μ.
 – A frequentist would use the sample mean.

Posterior Distribution

• After a sample is taken from a population, the prior distribution can be updated using the information contained in the sample.

• The updated prior is called the posterior distribution. Updating is done using Bayes Rule:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$
• Note that \(p(y) \) does not depend on \(\mu \).

• Hence, the posterior density is often written:

\[
p(\theta | y) \propto p(y | \theta)p(\theta)
\]

Posterior Likelihood Prior

Example

• Let \(y_1, \ldots, y_n \) be observations from a \(N(\mu, \sigma^2) \) distribution, with \(\mu \) unknown and \(\sigma^2 \) known.

• Suppose we take the prior distribution of \(\mu \) to be \(N(\mu_0, \tau_0^{-2}) \) for some choice of \(\mu_0 \) and \(\tau_0^{-2} \).

\[
p(\theta | y_1, \ldots, y_n) \propto p(y_1, \ldots, y_n | \theta)p(\theta)
\]

\[
\propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \theta)^2\right\}\exp\left\{-\frac{1}{2\tau_0^{-2}} (\theta - \mu_0)^2\right\}
\]

Posterior Inference

• The posterior distribution contains all current information about the parameter \(\mu \).

• Numerical summarizes (e.g., mean, median, mode) of the distribution are used to obtain point estimates of the parameter.

• We can also make probability statements about the parameter of interest and create posterior intervals.

• It can be shown that

\[
\mu_n \mid y_1, \ldots, y_n \sim N(\mu, \sigma^2)
\]

where

\[
\mu_n = \frac{1}{\frac{1}{\tau_0^{-2}} + \frac{n}{\sigma^2}} \overline{y}
\]

and

\[
\frac{1}{\tau_n^{-2}} = \frac{1}{\tau_0^{-2}} + \frac{n}{\sigma^2}
\]

• Note: \(\mu_n = w\mu_0 + (1-w)\overline{y} \)
Precision

• The inverse of the variance is called the precision.

• The posterior mean is expressed as a weighted average of the prior mean and sample mean.

• The weights are proportional to the precisions.

• The posterior mean lies between the prior mean and the sample mean.
Priors

- In the Bayesian framework the choice of prior is crucial.

- If we have no prior information about the parameters, we may use non-informative priors.
 - These types of priors let the data ‘speak for itself’.

- One can also choose the priors in such a way that the posterior lies in the same family of distributions as the prior (conjugate priors).

Posterior Computation

- The posterior distribution is the basis for all Bayesian inference.

- Even if the posterior is known, it can be difficult to obtain exact values of certain posterior quantities (e.g., \(\mathbb{E}(\frac{\mathbf{x}_1}{\mathbf{x}_2} \mid y) \)).

- By generating random samples from the posterior, all quantities of interest can be approximated using Monte Carlo methods.

Monte Carlo Method

- Let \(g(\mathbf{x}) \) be some function of \(\mathbf{x} \) (e.g., \(\log(\mathbf{x}) \)).

- Suppose we want to estimate \(\mathbb{E}(g(\mathbf{x}) \mid y) \).

- Generate an i.i.d sequence \(\mathbf{x}_1, \ldots, \mathbf{x}_N \) from the posterior distribution of \(\mathbf{x} \).

- Estimate \(\mathbb{E}(g(\mathbf{x}) \mid y) \) using \(\bar{g} = \frac{1}{N} \sum_{i=1}^{N} g(\theta_i) \).

Bayesian Computations

- Sampling from the posterior is effective when it can be implemented.

- However, it is often difficult in practice.

- For most probability distributions there is no simple way to simulate random variables of that particular distribution.
MCMC

- **Markov-chain Monte-Carlo (MCMC)** is a method for sampling from a posterior distribution.
 - A Markov chain is generated that has the desired distribution as its **stationary distribution**.
 - The state of the chain after a large number of steps is used as a sample from the desired distribution.
 - Can be extremely computationally expensive.

Variational Bayes

- **Variational Bayes (VB)** is an approach towards approximating the posterior density which is less computationally intensive than MCMC.
 - Received a lot of attention in fMRI research.
 - It allows one to approximate the posterior density with another density that has a more analytically tractable form.

GLM with Priors

- Consider the standard GLM:
 \[Y = X\beta + \varepsilon \quad \varepsilon \sim N(0,V) \]
- Suppose we place a prior on \(X\), e.g.
 \[\beta \sim N(\beta_0,\Sigma_0) \]
- It can be shown that the posterior distribution of \(X\) follows a normal distribution. We can use this distribution to perform inference.

- The posterior mean provides a point estimate of \(X\):
 \[\hat{\beta} = (X^TV^{-1}X + \Sigma_0^{-1})^{-1}(X^TV^{-1}y + \Sigma_0^{-1}\beta_0) \]
 - If \(\Sigma_0\) large then \(\hat{\beta} = (X^TV^{-1}X)^{-1}X^TV^{-1}y\)
 GLS estimate
 - If \(\Sigma_0 = 0\) then \(\hat{\beta} = (X^TV^{-1}X + \Sigma_0^{-1})^{-1}X^TV^{-1}y\)
 Shrinkage
Posterior Probability Maps

- The Posterior distribution is the probability of getting an effect, given the data \(p(\beta|y) \).

- **Posterior probability maps** are images of the probability or confidence that an activation exceeds some specified threshold, given the data \(p(\beta > \gamma | y) > \alpha \)

![Posterior Distribution Graph]

Comments

- **Frequentist and Bayesian methods are answering different questions.**

- To combine prior beliefs with data in a principled manner use Bayesian inference.

- To construct procedures with guaranteed long run performance use frequentist methods.

Illustration

Frequentist

Thresholded t-statistic map
(p=0.005, uncorrected)

Bayesian PPM

Voxels with probabilities of task-related increases in activity exceeding \(\alpha = 0.85 \).

Hypothesis Testing

- In classical hypothesis testing we seek to determine whether we can reject a null hypothesis of no effect.
 - The \(p \)-value is the probability of obtaining a result as or more extreme under the assumption that the null hypothesis is true.
 - We can never accept the null hypothesis.
 - Given enough data every voxel would be significant.

- **Bayesian methods allows us to derive probabilities about hypothesis of interest.**
 - Not restricted to disproving the null hypothesis.
 - It may be more interesting to compute the probability of some hypothesis, than to disprove a hypothesis of no effect.
Multilevel Models

- Data sets where there is a hierarchy of nested populations are often called multilevel.
 - Voxels nested within subjects nested within groups.

- Multilevel models are extensions of regression in which data are structured in groups and coefficients can vary by group.
 - Allows information to be shared across groups.

Multilevel GLM

\[Y = X\beta + \epsilon \quad \epsilon \sim N(0,V) \]

\[p(y|\mathbf{x}) = N(X'\mathbf{x}, V) \] represents variability within a subject.

\[\beta = \beta_g + \eta \quad \eta \sim N(0,\Sigma) \]

\[p(\mathbf{x}|\mathbf{y}_g) = N(\mathbf{x}_g', \mathbf{x}) \] represents variability across subjects.

\[\beta_g \sim p(\beta_g) \]

\[p(\mathbf{x}_g) \] represents information about a fixed but unknown quantity.

Illustration

Empirical Bayes

- It is common in neuroimaging to use so-called empirical Bayes methods.

- Here the parameters of the prior are estimated directly from the data, rather than being subject to prior specification of their own as is the case in a fully Bayesian model.
Shrinkage

- Multilevel models allow for heterogeneity across subjects, but still consider values observed in other subjects.

- Each subject-specific estimate gets shrunk towards the overall estimate.
 - The greater the uncertainty, the more shrinkage.
 - The less the uncertainty, the more we trust the individual estimate and the less it gets shrunk.

Example

- Radon levels of houses in 85 counties in Minnesota.

 Gelman and Hill, 2007

Model Comparison

- Model comparison can be performed to determine whether the data favors one model over another.

 - The model evidence is defined as
 \[p(y \mid m) = \int p(y \mid \theta, m)p(\theta \mid m)d\theta \]

 - The Bayes factor for comparing model i to j:
 \[B_{ij} = \frac{p(y \mid m = i)}{p(y \mid m = j)} \]

 If \(B_{ij} \) is large than i more likely than j.

Example

- Most differences no longer statistically significant

 Penny et al.

Use Bayes factors to compare three different candidate models.
Summary

• Bayesian methods are gaining in popularity in fMRI research.

• They allow us to calculate the probability that an activation exceeds some specific threshold, given the data.
 – Not restricted to disproving a null hypothesis.

• Requires specifying prior distributions and can be computationally expensive.