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GROUP ANALYSIS 

AGGREGATING MULTIPLE SUBJECTS 

 When we conduct multi-subject analysis we are trying 

to understand whether an effect is “significant” across 

a group of people. 

 Whether something is significant depends on the 

variance we assess it against: 

 

Classical statistical hypothesis testing proceeds by 

comparing the difference between the expected and 

hypothesized effect against the òyardstickó of 

variance. 
 

[Holmes & Friston, 1998] 

 

VARIANCE AT THE GROUP LEVEL 

 Fixed Effects (FFX): is about the intra-subject variability. 

An effect is compared against the “yardstick” of the 

precision with which it can be measured (for each subject). 

The different subjects are considered to be “fixed.” 

 

 Random Effects (RFX): is about the inter-subject 

variability. An effect is compared against the “yardstick” of 

how much variability there is across different subjects. The 

different subjects are considered to be a “random” sample 

from a greater population. 

 

 Mixed Effects (MFX): is about intra-subject & inter-

subject variability. 

 Adapted from T Nichols 

FIXED EFFECTS: INTRA-SUBJECT VARIABILITY  

 

 Only variation (over sessions) is measurement error 

 True Response magnitude is fixed 

RANDOM EFFECTS: INTER-SUBJECT VARIABILITY 

 

 

 Source of variation 

 Response magnitude 

 Response magnitude is random 

 Each subject/session has random magnitude 

  But note, the population mean is fixed 

Adapted from T Nichols 6 

MIXED EFFECTS 

 

 

 Two sources of variation 

 Measurement error 

 Response magnitude 

 Response magnitude is random 

 Each subject/session has random magnitude 

 But note, the population mean is fixed 

Adapted from T Nichols 
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IN OTHER WORDS … A HAIRY EXAMPLE 

Question: Do M & F hair differ in length? 

Experiment: Take 25 hairs from each of 8 Ss (4F, 4M)  
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By Jeanette Mumford 

GROUP ANALYSIS STRATEGIES: FFX 
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 Fixed isn’t “wrong,” just usually isn’t of interest 

 Fixed Effects Inference 

 “I can see this effect in this cohort” 

 Random Effects Inference 

 “I can extend my inference to the population” 

FIXED V RANDOM GROUP ANALYSIS STRATEGIES (I): “ALL-IN-ONE” 

 Complete single-level GLM that relates various 

parameters of interest at the group level to the full set 

of (time series) data available 

 Computationally intense approach 

 What if you acquire 1 more dataset? 

  ggXXY

GROUP ANALYSIS STRATEGIES (II):  

 THE SUMMARY STATISTIC APPROACH 
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p < 0.001 (uncorrected) 

SPM{t} 

(no voxels significant at p < 0.05 (corrected)) 

Adapted from T Nichols 
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SPM (I): Assume homoscedastic 1st level variances and do an OLS 

 

 To maintain equivalence with all-in-one model assume: 

 1. first level variances must be equal (     ) 

2. First level X matrices must be the same (i.e., “balanced” for 

all subjects) 

2

w

GROUP ANALYSIS STRATEGIES (II):  

 THE SUMMARY STATISTIC APPROACH 

SPM (I): Assume homoscedastic 1st level variances and do an OLS. 

FSL: Carry forward c/ estimates and covariance matrix. (i.e., do a 

GLS) 

SPM (II): Fine. Let's estimate the covariance structure (ReML) from 

first level (only significant voxels) and carry that forward. 

Data: 

Beckmann 03 (FSL): must weight variances 

Friston 05 (SPM): OLS is robust to unequal variances 

Mumford 09 (FSL afecionada): OLS is robust, but only for 1 

sample t-test, GLS always more optimal strategy. 

GROUP ANALYSIS STRATEGIES (II):  

 THE SUMMARY STATISTIC APPROACH 
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GROUP ANALYSIS STRATEGIES (II):  

 THE SUMMARY STATISTIC APPROACH 

SPM (I): Assume homoscedastic 1st level variances and do an OLS. 

FSL: Carry forward c/ estimates and covariance matrix. (i.e., do a 

GLS) 

SPM (II): Estimate the covariance structure (ReML) from first level 

(only significant voxels) and carry that forward. 

Data: 

Beckmann 03 (FSL): must weight variances 

Friston 05 (SPM): OLS is robust to unequal variances 

Mumford 09: OLS is robust, but only for 1 sample t-test, GLS 

always more optimal strategy. 

GROUP ANALYSIS STRATEGIES (II):  

 THE SUMMARY STATISTIC APPROACH 

i. FFX inferences are valid, but only with respect 

to the sample. May be of interest for single case 

studies, or small rare populations you can fully 

sample. 

ii. MFX inferences are valid over the population 

you sample from because you are accounting for 

sampling variability. This is what you want to do 

for a typical group study. 

iii. The Summary statistic approach is efficient. Run 

1st levels independently, then combine the 

results. If you run 1 more subject, then you only 

have to re-run the group.  

RECAP 
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MASSIVE UNIVARIATE APPROACH 

timecourses at [ 03, -78, 00 ] 

t distribution 

 

u 

t = 

contrast of 
estimated 

parameters 

variance 
estimate 

  = p(t > u | H0) 

Source: Jonathan Peelle 

Source: Jonathan Peelle 

HOW THESE DATA WERE GENERATED 

MULTIPLE COMPARISONS PROBLEM 

 When you make 1 test, what is the probability that a 

positive result is, in fact, not true (i.e., false positive) 

  →  (say, 5%) 

 If we make 2 tests, what is the overall probability (i.e., 

‘family-wise’ probability) of false positives? 

  → 1–(1–)2 (at a nominal 5%: 9.75%) 

 If we make n tests, what is the overall probability (i.e., 

‘family-wise’ probability) of false positives? 

  → 1–(1–)n 

MULTIPLE COMPARISONS PROBLEM 

 How many tests do we perform in fMRI analysis? 

 Over (say) 100,000 null 

voxels, how many times 

will we incorrectly reject 

H0? 

 ~5,000 voxels (on 

average!) 

 

# Comparisons 

P

r

o

b

 

F

P

 

0.05 

0.01 

0.005 

0.001 
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FISHY STATISTICS 

Stimuli: pictures of faces (w/emotional expressions). 

Task: determine what emotions depicted faces were  

 experiencing. 

Design: blocks of 12 sec activation/rest 

Analysis: standard data processing with SPM 

Subject: 1 dead Atlantic Salmon. 

FALSE ACTIVATIONS UNDER H0 

 

P < 0.001  (32 voxels) P < 0.01  (364 voxels) P < 0.05  (1682 voxels) 

HOW MUCH CORRECTION? 

A B C 

t = 2.10,   p < 0.05 (uncorrected) t = 3.60,   p < 0.001 (uncorrected) t = 7.15,   p < 0.05,         
Bonferroni Corrected 

Good Specificity 
 

Poor Power 
(risk of false 

negatives) 

Poor Specificity 
(risk of false 

positives) 
 

Good Power 

CORRECTION FOR MULTIPLE COMPARISONS 

2 main strategies: 

 

1. Family Wise Error (FWE): Control for the 

probability of any false positives (e.g., 

Bonferroni, Random Field Theory, Permutation) 

 

2. False Discovery Rate (FDR): Control 

proportion of false positives among rejected 

tests 

 

FWE (I): BONFERRONI 

 Main idea: make each individual test more stringent, so 

overall you end up with your total (i.e., family-wise)  

‘desired’ false positive rate. 

 

 

 For example: 

 Desired familywise false positive rate: FW = 0.05 

 Total number of (independent) tests: 100,000 

 Then the Bonferroni-corrected false positive level for each 

individual test is: 

FWi

n

i i
FWBonf

i HTP
n




   
)|( 01

0000005.0
000,100

05.0


n

FWBonf

i




FWE (I): BONFERRONI 

  Assumes independent tests 

  FMRI data spatially correlated 

(vasculature, spatial smoothing), 

so the number of independent tests 

is less than the number of voxels 

 → Overly stringent 

 → Increases Type II error 

  Difficult to find what is n in order 

to calculate the correct abonf   
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FWE (II): RANDOM FIELD THEORY 

  Allows to find a threshold in a set of data where it’s 
not easy (or even impossible) to find the number of 
independent variables 

 3 step approach: 

i. Estimate how smooth the data is (“resels”) 

ii.Compute how many peaks would be above the threshold 
by chance (“Euler Characteristic”) 

iii.Calculate the threshold that yields desired FWER 

 

1. SMOOTHNESS PARAMETRIZATION 

We can't compute the # of independent voxels, but we can 

compute the number of resolution elements (i.e. “resels”). 

 

 

2. EULER CHARACTERISTIC 

• Topological measure [c] 

• Threshold an image at u 

• EC = # of blobs - # holes 

• At high u: 

          P(blob) = E[EC]  

• Under H0, FWE = E[EC] 

Given the smoothness of my data (R), what threshold (Z) do 
I need to set so that I have FW  chance (~E[EC]) of having 
peak above threshold? 

2

2

1

2

3

)2)(2log4(][
tZ

teFW eZRE


 c

3. THRESHOLD 

 FDR controls the expected proportion of false positive 

values among supra-threshold values (i.e., false claims 

v false tests): 

  p < 0.05 FWE means: There is only a 5% chance any 

result is a false positive. 

  p < 0.05 FDR means: No more than 5% of active 

voxels are false positives. 

FALSE DISCOVERY RATE (FDR) FALSE DISCOVERY RATE (FDR) 
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COMPARING CORRECTION METHODS 

Signal 

Signal+Noise 

Noise 

Exp 

1 

Exp 

2 

Exp 

3 

Exp 

4 

Exp 

5 

Exp 

6 

Exp 

7 

Exp 

8 

Exp 

9 

Exp 

10 

NO CORRECTION ( = 0.1) 

On average, 10% of the 'false' voxels are incorrectly 

declared “active.”  

In each experiment we have about 10% false alarms 

FWE ( = 0.1) FDR ( = 0.1) 

REAL DATA: FWE (RFT) V FDR 


