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Overview 

•  Brain connectivity: types & definitions 
–  anatomical connectivity 
–  functional connectivity 
–  effective connectivity 

•  Dynamic causal models (DCMs) 
–  DCM for fMRI: Neural and hemodynamic levels 
–  Parameter estimation & inference 

•  Applications of DCM to fMRI data 
–  Design of experiments and models 
–  Some empirical examples and simulations 



Connectivity 

A central property of any system 

 Communication systems          Social networks 
 (internet)               (Canberra, Australia) 

FIgs. by Stephen Eick and A. Klovdahl; 
see http://www.nd.edu/~networks/gallery.htm 



Structural, functional & effective connectivity 

•  anatomical/structural connectivity 
= presence of axonal connections 

•  functional connectivity  
=  statistical dependencies between regional time  series 

•  effective connectivity  
=  causal (directed) influences between neurons or 

 neuronal populations 

Sporns 2007, Scholarpedia 



Anatomical connectivity 

•  neuronal  communication 
via synaptic contacts 

•  visualisation by tracing 
techniques 

•  long-range axons  
“association fibres” 



Different approaches to analysing functional 
connectivity 

•  Seed voxel correlation analysis 

•  Eigen-decomposition (PCA, SVD) 

•  Independent component analysis (ICA) 

•  any other technique describing statistical dependencies amongst 
regional time series 



Does functional connectivity not simply 
correspond to co-activation in SPMs? 

No, it does not - see 
the fictitious example 
on the right: 
 
Here both areas A1 and 
A2 are correlated 
identically to task T, yet 
they have zero 
correlation among 
themselves: 
 
r(A1,T) = r(A2,T) = 0.71 
but 
r(A1,A2) = 0 ! 
 

task T regional response A2 regional  
response A1 

Stephan 2004, J. Anat. 



Pros & Cons of functional connectivity analyses 

•  Pros: 
–  useful when we have no experimental control over the 

system of interest and no model of what caused the data 
(e.g. sleep, hallucinatons, etc.) 

•  Cons: 
–  interpretation of resulting patterns is difficult / arbitrary  
–  no mechanistic insight into the neural system of interest 
–  usually suboptimal for situations where we have a priori 

knowledge and experimental control about the system of 
interest 

models of effective connectivity necessary 



For understanding brain function mechanistically, 
we need models of effective connectivity, i.e. 

 
models of causal interactions among neuronal 

populations. 



Some models for computing effective connectivity 
from fMRI data 

•  Structural Equation Modelling (SEM)  
McIntosh et al. 1991, 1994; Büchel & Friston 1997; Bullmore et al. 2000 

•  regression models  
(e.g. psycho-physiological interactions, PPIs) 
Friston et al. 1997 

•  Volterra kernels  
Friston & Büchel 2000 

•  Time series models (e.g. MAR, Granger causality) 
Harrison et al. 2003, Goebel et al. 2003 

•  Dynamic Causal Modelling (DCM) 
bilinear: Friston et al. 2003;   nonlinear: Stephan et al. 2008 
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Dynamic causal modelling (DCM) 

• DCM framework was introduced in 2003 for fMRI by Karl Friston, 
Lee Harrison and Will Penny (NeuroImage 19:1273-1302) 

• part of the SPM software package 
• currently more than 100 published papers on DCM 



GLM DCM 

Inference Within voxels Among ROIs 

On BOLD signal Neuronal Activation 

Answering Where the stimulus 
produced activation. 

How the stimulus 
activated the system of 
interconnected ROIs. 

Using Frequentist Estimation Bayesian Estimation 

DCM vs GLM:  Cheat Sheet 



),,( θuxF
dt
dx =

Neural state equation: 

Electromagnetic 
forward model: 

neural activity, EEG 
MEG 
LFP 

Dynamic Causal Modeling (DCM) 

simple neuronal model 
complicated forward model 

complicated neuronal model 
simple forward model 

fMRI EEG/MEG 

inputs 

Hemodynamic 
forward model: 
neural activity, BOLD 

Stephan & Friston 2007,  
Handbook of Brain Connectivity 



DCM for fMRI: the basic idea 
•  Using a bilinear state equation, a cognitive 

system is modelled at its underlying neuronal 
level (which is not directly accessible for fMRI). 

•  The modelled neuronal dynamics (x) is 
transformed into area-specific BOLD signals (y) 
by a hemodynamic forward model (λ). 

λ 

z 

y 

The aim of DCM is to estimate parameters at 
the neuronal level such that the modelled 
BOLD signals are maximally similar to the 
experimentally measured BOLD signals. 
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Bilinear DCM 
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LG 
left 

LG 
right 

RVF LVF 

FG 
right 

FG 
left 

LG = lingual gyrus 
FG = fusiform gyrus 
 
Visual input in the   
 - left (LVF) 
 - right (RVF) 
visual field. x1 x2 

x4 x3 

u2 u1 

x1 = a11x1 + a12x2 + a13x3 + c12u2
x2 = a21x1 + a22x2 + a24x4 + c21u1
x3 = a31x1 + a33x3 + a34x4
x4 = a42x2 + a43x3 + a44x4

Example:  
a linear system 
of dynamics in 
visual cortex 



Example:  
a linear system 
of dynamics in 
visual cortex 

LG = lingual gyrus 
FG = fusiform gyrus 
 
Visual input in the   
 - left (LVF) 
 - right (RVF) 
visual field. 
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Extension:  
bilinear  
dynamic  
system 
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Example:  
context-dependent decay u1 

u2 

x2 

x1 

Penny, Stephan, Mechelli, Friston  
NeuroImage (2004) 



Any design that is good for a GLM of fMRI data. 

What type of design is good for DCM? 
 



GLM vs. DCM 

DCM tries to model the same phenomena as a GLM, just in a different way: 

It is a model, based on connectivity and its modulation, for explaining 
experimentally controlled variance in local responses. 

No activation detected by a GLM → inclusion of this region in a DCM is 
useless! 

Stephan 2004, J. Anat. 



Multifactorial design:  
explaining interactions with DCM 

Task factor 
Task A Task B 

St
im

 1
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TA/S1 TB/S1 

TA/S2 TB/S2 

X1 X2 

Stim2/ 
Task A 

Stim1/ 
Task A 

Stim 1/ 
Task B 

Stim 2/ 
Task B 

GLM 

X1 X2 

Stim2 

Stim1 

Task A Task B 

DCM 
Let’s assume that an SPM analysis 
shows a main effect of stimulus in X1 
and a stimulus * task interaction in X2.   

How do we model this using DCM? 



Stim 1 
Task A 

Stim 2 
Task A 

Stim 1 
Task B 

Stim 2 
Task B 

Simulated data 

X1 

X2 

+++ X1 X2 

Stimulus 2 

Stimulus 1 

Task A Task B 

+ +++ + 

+++ 
+ 

– – 

Stephan et al. 2007, J. Biosci. 



Stim 1 
Task A 

Stim 2 
Task A 

Stim 1 
Task B 

Stim 2 
Task B 

plus added noise (SNR=1) 

X1 

X2 



DCM parameters =  rate constants 

dx ax
dt

= 0( ) exp( )x t x at=

The coupling parameter a  
thus describes the speed of 
the exponential change in x(t) 

0
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Integration of a first-order linear differential equation gives an 
exponential function: 

a = ln2 /τ

00.5x

a/2ln=τ

Coupling parameter a is inversely 
proportional to the half life   of z(t): τ



Interpretation of DCM parameters 
•  Dynamic model (differential equations) 

a  neural parameters correspond to 
 rate constants (inverse of time 
 constants =  Hz!) 

    speed at which effects take place 

•  Identical temporal scaling in all areas 
by factorising A and B with σ: 
all connection strengths are relative to 
the self-connections. 

•  Each parameter is characterised by 
the mean (ηθ|y) and covariance of its 
a posteriori distribution. Its mean can 
be compared statistically against a 
chosen threshold γ. 
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The problem of hemodynamic convolution 

Goebel et al. 2003, Magn. Res. Med. 
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},,,,,{ ερατγκθ =h

important for model fitting, 
but (usually) of no interest 
for statistical inference 

•  6 hemodynamic parameters: 

•  Computed separately for each 
area (like the neural 
parameters) 
 region-specific HRFs! 

The hemodynamic 
model in DCM 

Friston et al. 2000, NeuroImage 
Stephan et al. 2007, NeuroImage 
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How interdependent are neural and hemodynamic 
parameter estimates? 

Stephan et al. 2007, NeuroImage 
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•  Combining the neural and 
hemodynamic states gives 
the complete forward model. 

•  An observation model 
includes measurement  
error e and confounds X 
(e.g. drift). 

•  Bayesian parameter 
estimation by means of a 
Levenberg-Marquardt 
gradient ascent, embedded 
into an EM algorithm. 

•  Result: 
Gaussian a posteriori 
parameter distributions, 
characterised by  
mean ηθ|y and  
covariance Cθ|y. 

Overview: 
parameter estimation 

ηθ|y 

neural state 
equation x = (A+ u jB

j )x +Cu∑



p-value: probability of getting the observed data in the effect’s 
absence. If small, reject null hypothesis that there is no effect. 

0

0

: 0
( | )
H
p y H

θ =

Limitations: 
 One can never accept the null hypothesis 
 Given enough data, one can always demonstrate a significant effect 
 Correction for multiple comparisons necessary 

Solution: infer posterior probability of the effect 

Probability of observing the data y, 
given no effect. 

)|( yp θ

Problems of classical (frequentist) statistics 

Probability of the effect, 
given the observed data 



Bayes‘ Theorem 

Reverend Thomas Bayes 
1702 - 1761 

“Bayes‘ Theorem describes, how an ideally rational person 
processes information." 
Wikipedia 
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Likelihood Prior 

Evidence 

Posterior 



Bayesian statistics 

p(θ | y)∝ p(y |θ )p(θ )
posterior          likelihood    ∙   prior 

)|( θyp )(θp

Bayes theorem allows one to formally 
incorporate prior knowledge into 
computing statistical probabilities. 

Priors can be of different sorts: 
empirical, principled or shrinkage 
priors. 

The “posterior” probability of the 
parameters given the data is an 
optimal combination of prior knowledge 
and new data, weighted by their 
relative precision. 

new data prior knowledge 

∝



y 
 Observation of data 

Likelihood  

       prior distribution  

 Formulation of a generative model 

 Update of beliefs based upon observations, given a prior 
state of knowledge 

p(θ | y)∝ p(y |θ )p(θ )

Principles of Bayesian inference 

p(y |θ )
p(θ )



•  needed for Bayesian estimation, 
embody constraints on 
parameter estimation 

•  express our prior knowledge or 
“belief” about parameters of 
the model 

•  hemodynamic parameters: 
empirical priors 

•  temporal scaling: 
principled prior 

•  coupling parameters: 
shrinkage priors 

Priors in DCM 

posterior          likelihood    ·   prior 

Bayes Theorem 

p(θ | y)∝ p(y |θ ) ⋅ p(θ )
∝



Shrinkage Priors  
Small & variable effect Large & variable effect 

Small but clear effect Large & clear effect 



•  Gaussian assumptions about the posterior distributions of the 
parameters 

•  Use of the cumulative normal distribution to test the probability that 
a certain parameter (or contrast of parameters cT ηθ|y) is above a 
chosen threshold γ: 
 

•  By default, γ is chosen as zero ("does the effect exist?"). 

Inference about DCM parameters: 
Bayesian single-subject analysis 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
=

cCc

c
p

y
T

y
T

N

θ

θ γη
φ



Bayesian single subject inference 

LG 
left 

LG 
right 

RVF 
stim. 

LVF 
stim. 

FG 
right 

FG 
left 

LD|RVF 

LD|LVF 

LD LD 

0.34 
 0.14 

-0.08 
 0.16  

0.13 
 0.19 

0.01 
 0.17 

0.44 
 0.14 

0.29 
 0.14 

Contrast: 
Modulation LG right -> LG links by LD|LVF 
vs. 
modulation LG left -> LG right by LD|RVF 

p(cTηθ|y>0|y)  
= 98.7% 

Stephan et al. 2005,  
Ann. N.Y. Acad. Sci. 



Inference about DCM parameters: 
 Bayesian fixed-effects group analysis 

Because the likelihood distributions 
from different subjects are independent, 
one can combine their posterior 
densities by using the posterior of one 
subject as the prior for the next: 
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Under Gaussian assumptions this is 
easy to compute: 

group 
posterior  
covariance 

individual 
posterior  
covariances 

group 
posterior  
mean 

individual posterior  
covariances and means 



Bayesian model selection (BMS) 
Given competing hypotheses 
on structure & functional 
mechanisms of a system, which 
model is the best? 

 For which model m does p(y|
m) become maximal? 

Which model represents the 
best balance between model  
fit and model complexity? 

Pitt & Miyung (2002), TICS 



θθθ dmpmypmyp  )|(),|()|( ∫ ⋅=Model evidence: 

Various approximations, e.g.: 
-  negative free energy 
-  AIC 
-  BIC 

Penny et al. (2004) NeuroImage 

Bayesian model selection (BMS) 
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Model comparison via Bayes factor: 

)|(
)|(),|(),|(

myp
mpmypmyp θθθ =Bayes’ rules: 

accounts for both accuracy and complexity of the model 

allows for inference about structure (generalisability) of the model 



Bayes factors 
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But: the log evidence is just some number – not very intuitive! 

A more intuitive interpretation of model comparisons is made 
possible by Bayes factors: 

To compare two models, we can just compare their log evidences. 

B12 p(m1|y) Evidence 
1 to 3 50-75% weak 

3 to 20 75-95% positive 
20 to 150 95-99% strong 

> 150 > 99% Very strong 
Kass & Raftery classification: 

Kass & Raftery 1995, J. Am. Stat. Assoc. 



Example studies 
of DCM for fMRI 
•  DCM now an 

established tool for 
fMRI & M/EEG 
analysis 

•  >100 studies 
published, incl. high-
profile journals 

•  combinations of DCM 
with computational 
models 



Thank you 


