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Overview

‘ « Brain connectivity: types & definitions

— anatomical connectivity
— functional connectivity
— effective connectivity

‘ * Dynamic causal models (DCMs)

— DCM for fTMRI: Neural and hemodynamic Tevels
— Parameter estimation & inference

| + Applications of DCM to fMRI data

— Design of experiments and models
— Some empirical examples and simulations



Connectivity

A central property of any system

Communication systems Social networks
(internet) (Canberra, Australia)

Flgs. by Stephen Eick and A. Klovdahl;
see http://www.nd.edu/~networks/gallery.htm



Structural, functional & effective connectivity

- anatomical/structural connectivity Sporns 2007, Scholarpedia
= presence of axonal connections

* functional connectivity
= statistical dependencies between regional time series

« effective connectivity
= causal (directed) influences between neurons or
neuronal populations



Anatomical connectivity

neuronal communication
via synaptic contacts

visualisation by tracing
techniques

long-range axons {¥
*association fibres

~a




Different approaches to analysing functional
connectivity

Seed voxel correlation analysis
Eigen-decomposition (PCA, SVD)
Independent component analysis (ICA)

any other technique describing statistical dependencies amongst
regional time series



Does functional connectivity not simply
correspond to co-activation in SPMs?

No, it does not - see
the fictitious example
on the right:

Here both areas A, and
A, are correlated
idzentically to task T, yet
they have zero
correlation among
themselves:

r(A,T)=r(A,,T)=0.71
but
r(A,A,)=01!
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Stephan 2004, J. Anat.



Pros & Cons of functional connectivity analyses

* Pros:

— useful when we have no experimental control over the
system of interest and no model of what caused the data
(e.g. sleep, hallucinatons, etc.)

« Cons:
— interpretation of resulting patterns is difficult / arbitrary

— no mechanistic insight into the neural system of interest

— usually suboptimal for situations where we have a priori
knowledge and experimental control about the system of
iInterest

mmm) models of effective connectivity necessary



For understanding brain function mechanistically,
we need models of effective connectivity, i.e.

models of causal interactions among neuronal
populations.



Some models for computing effective connectivity
from fMRI data

Structural Equation Modelling (SEM)
Mclintosh et al. 1991, 1994: Buchel & Friston 1997; Bullmore et al. 2000

regression models

(e.g. psycho-physiological interactions, PPIs) -
Friston et al. 1997

Volterra kernels
Friston & Buchel 2000

Time series models (e.g. MAR, Granger causality)
Harrison et al. 2003, Goebel et al. 2003

Dynamic Causal Modelling (DCM) '

bilinear: Friston et al. 2003; nonlinear: Stephan et al. 2008
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Dynamic causal modelling (DCM)

 DCM framework was introduced in 2003 for fMRI by Karl Friston,
Lee Harrison and Will Penny (Neurolmage 19:1273-1302)

« part of the SPM software package
« currently more than 100 published papers on DCM



DCM vs GLM: Cheat Sheet
. |cLm DCM

Inference Within voxels Among ROls

On BOLD signal Neuronal Activation

Answering Where the stimulus How the stimulus
produced activation. activated the system of

interconnected ROIs.

Using Frequentist Estimation = Bayesian Estimation



Dynamic Causal Modeling (DCM)

Hemodynamic Electromagnetic
forward model: forward model:

neural activity, BOLD neural activity, EEG
MEG

LFP

\ Neural state equation: /
dx F( 9)
fMRI a0 EEG/MEG

complicated neuronal model
simple forward model

simple neuronal model
complicated forward model

Stephan & Friston 2007, inputs
Handbook of Brain Connectivity



DCM for fMRI: the basic i1dea

e Using a bilinear state equation, a cognitive
system is modelled at its underlying neuronal
level (which is not directly accessible for fMRI).

e The modelled neuronal dynamics (x) is
transformed into area-specific BOLD signals (y)
by a hemodynamic forward model (7).

The aim of DCM is to estimate parameters at
the neuronal level such that the modelled
BOLD signals are maximally similar to the
experimentally measured BOLD signals.
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Stephan & Friston (2007),
Handbook of Brain Connectivity
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Bilinear DCM

driving O

input
O
O

modulation

Two-dimensional Taylor series (around x,=0, u,=0):

dx J°
E:f(x’u) zf(xO,O)-I—a—éx-l—a—];u-l- axa];uX‘F...

b Bilinear state equation:

Z’t [A+Zu B(’)}x+Cu



Example:

a linear system
of dynamics in
visual cortex

u LG = lingual gyrus

X3 Ieft ght X4 FG = fusiform gyrus

Visual input in the
- left (LVF)
- right (RVF)

9

X1 |eft ht X, visual field.
RVF LVF
u2 u1

X, =a X, Ta,x, +a, X, +c,u,
X, =a,Xx ta,x,+a,x, +c,u,
X, =a; X, TapX,+a, X,

Xy = ApX, Ta,X,+a,X,




Example:

O

LG = lingual gyrus

. X3 | f h X4 = fusi
a ||near System eft 9 t FG = fusiform gyrus
of dynamics in Visual input in the
- - left (LVF)
visual cortex right (RVF)
X1 |eft ght X visual field.
RVF
)
state effective system input external
changes connectivity state = parameters inputs
| | | |
AN ¥ ¥ ¢
xl dy 4y 4y 0 t 0 C
. — . 12
X = Ax + Cu Yy _ a, a, 0 24 *) n Gy 0 “
X'3 a31 O a33 34 X3 O O uz
HI{A,C} _)'64 1 L 0 Ay, Ay 44 Xy | L 0 0 i




Extension: /\_._f\

bilinear X3 Ieft : ght X,
system <
. 9

5.-'

RVF  CONTEXT LVF

) Us Uy
X, a, a, a, 0 0 b1(23) 0 O X 0 ¢, o | y |
: 1
) ) a, a, 0 a, +u, 0O 0 0 O > ) N C,, 0 0 u,
X, a, 0 a, a, 0O 0 O bgj) X, 0 0 0 y
i X, |1l 0 a, a, a, | 0 0 0 0 | x| | 0 0 0 |t 3




Example:

context-dependent decay

-
%
* -
o
.

Xo

Penny, Stephan, Mechelli, Friston
Neurolmage (2004)

Ji=4ax+uB®x+Cu

C

0

0 O




What type of design is good for DCM?

Any design that is good for a GLM of fMRI data.



GLM vs. DCM

DCM tries to model the same phenomena as a GLM, just in a different way:

It is a model, based on connectivity and its modulation, for explaining
experimentally controlled variance in local responses.

No activation detected by a GLM — inclusion of this region in a DCM is
useless!

Stephan 2004, J. Anat.



Multifactorial design:
explaining interactions with DCM

Task factor Stim1/ Stim2/
Task A Task B Task A TaskA
S E
o
=
g N
£ E Stim 1/ Stim 2/
nh & TS Ta/S; Task B Task B
Let's assume that an SPM analysis Stim1
shows a main effect of stimulus in X, 2
and a stimulus * task interaction in X,. ‘ & S X, DCM

How do we model this using DCM? Stim2
Task A Task B
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Stephan et al. 2007, J. Biosci.



Region A1

ion A1
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Region A2
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plus added noise (SNR=1)



DCM parameters = rate constants

Integration of a first-order linear differential equation gives an
exponential function:

dx
Z—gx =) x(t)=x,exp(at)
dt S
Coupling parameter a is inversely The coupling parameter a
proportional to the half life 7 of z(t): thus describes the speed of
the exponential changejin x(t)
x(T) — 05y 0.5x, whees : ,
- . O 50 .
= x, exp(ar) 4 |
m) | a-in2/7 i imiia




Interpretation of DCM parameters

 Dynamic model (differential equations) "
a neural parameters correspond to 0" = { A B,C, (7}
rate constants (inverse of time
constants = Hz!)
T speed at which effects take place a=1n2/t

* Identical temporal scaling in all areas -1 a,
by factorising A and B with o:
all connection strengths are relative to
the self-connections.

A—ocA=0| a3, -1

 Each parameter is characterised by
the mean (7,,) and covariance of its
a posteriori distribution. Its mean can
be compared statistically against a
chosen threshold vy.



The problem of hemodynamic convolution

Goebel et al. 2003, Magn. Res. Med.



The hemodynamic
model in DCM

6 hemodynamic parameters:

0" ={x,y,7,0, p,E}

!

important for model fitting,
but (usually) of no interest
for statistical inference

Computed separately for each
area (like the neural

parameters)
¥] region-specific HRFs!

Friston et al. 2000, Neurolmage
Stephan et al. 2007, Neurolmage
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How interdependent are neural and hemodynamic
parameter estimates?

1
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Stephan et al. 2007, Neurolmage



Overview:

parameter estimation

Combining the neural and
hemodynamic states gives
the complete forward model.

An observation model
includes measurement
error e and confounds X
(e.g. drift).

Bayesian parameter
estimation by means of a
Levenberg-Marquardt
gradient ascent, embedded
into an EM algorithm.

Result:

Gaussian a posteriori
parameter distributions,
characterised by

stimulus function u

TIGIV

mean )y, and
covariance Cg,.

: : neural state
=(A+ Y u B )x+ -
x=( U, )x+Cu equation
R activity - dependent vasodilatory signal .
1 d=z-m—r-n
f S S
flow - indu::tion (rCBF) parameters
hidden states f=s = o)
z=4{x,s, f,v,q} £ ) ’ ’1 ’ :n
0"={4,B ..B",C}
state equation 0=10".6"
z=F(x,u,0) ’
A 4 \ 4
changes in volume . changesin dHb
1 m=f ©q=fE(f,p)/p-v'*q/v
v q

modelled
BOLD response

»y=h(u6)+XL+e

observation model




Problems of classical (frequentist) statistics

p-value: probability of getting the observed data in the effect’s
absence. If small, reject null hypothesis that there is no effect.

H,:6=0 Probability of observing the data y,
p(y|H,) given no effect.

Limitations:
= One can never accept the null hypothesis
= Given enough data, one can always demonstrate a significant effect

= Correction for multiple comparisons necessary

Solution: infer posterior probability of the effect

D ( 0 | y) Probability of the effect,

given the observed data




Bayes' Theorem

Posterior
\ Likelihood Prior
\ S~ Z
0)p(6
P(H‘y):p(y\ )p(0)
p(y)
\

Evidence

Reverend Thomas Bayes
1702 - 1761

“Bayes’ Theorem describes, how an ideally rational person
processes information."

Wikipedia




Bayesian statistics

new data prior knowledge

p(y|0) |pO)

p(6 |y) “\I‘D(y 16)p(6)

posterior o< likelihood < prior

Bayes theorem allows one to formally

incorporate prior knowledge into The “posterior” probability of the
computing statistical probabilities. parameters given the data is an

optimal combination of prior knowledge
Priors can be of different sorts: and new data, weighted by their
empirical, principled or shrinkage relative precision.

priors.



Principles of Bayesian inference

= Formulation of a generative model

Likelihood p(y|0)
prior distribution p(0)

= Observation of data

= Update of beliefs based upon observations, given a prior
state of knowledge

p@]y)e<p(y|0)p(0)




Priors in DCM

needed for Bayesian estimation, = Bayes Theorem
embody constraints on

parameter estimation p(6|y) =< p(y|0)- p(6)

express our prior knowledge or
“belief” about parameters of
the model

hemodynamic parameters:
empirical priors

temporal scaling:
principled prior

coupling parameters:
shrinkage priors

posterior > likelihood - prior




Shrinkage Priors

Small & variable effect Large & variable effect

Small but clear effect Large & clear effect



Inference about DCM parameters:
Bayesian single-subject analysis

« (Gaussian assumptions about the posterior distributions of the
parameters

» Use of the cumulative normal distribution to test the probability that
a certain parameter (or contrast of parameters c’ Ngyy) IS above a
chosen threshold vy:

( )

CTU@ —)

_ |y

P =0y \/C‘TC
\

« By default, y is chosen as zero ("does the effect exist?").



Bayesian single subject inference

LD|LVF
0.13 0.34
®o0.19/ | o0.14

«_—

Ieft

T | | T LD
0.44 0.29
[ 0.14 0.14

rlght

Ieft a rlght
0.01 -0.08
0.17 0.16
RVF LD|RVF LVF
stim. stim.

Stephan et al. 2005,
Ann. N.Y. Acad. Sci.

i
)
S
I S TIPS NP
Q.G crrre e
0
-0.5 0 0.5 1 1.5
Contrast:

Modulation LG right -> LG links by LD|LVF
VS.
modulation LG left -> LG right by LD|RVF



Inference about DCM parameters:
Bayesian fixed-effects group analysis

Because the likelihood distributions
from different subjects are independent,
one can combine their posterior
densities by using the posterior of one
subject as the prior for the next:

p@ly) < py|0)pO)
POy, y,) e p(y,|0)p(y, | 0)p(0)
oc p(yz | 0)p(O| yl)

POy, yy) < p(yy |O)p(@|yy_)..p(O] y)

Under Gaussian assumptions this is
easy to compute:

group individual
posterior posterior
covariance covariances
N ¥
—1 . —1
Oyiss¥n Z C Vi
i=1
N
7 =1 > Co\ Mg, Co
elyl >V N 9|y1 elyz 9|yl sV N
T ‘Vf
group individual posterior
posterior covariances and means

mean




Bayesian model selection (BMS)

Given competing hypotheses k
on structure & functional '

mechanisms of a system, which
model is the best?

!

Which model represents the
best balance between model
fit and model complexity?

1 / / \ Model Comp|exity

e

Goodness of fit

Good

A
|
| Overfitting
\

Model fit

Generalizability

Poor

For which model m does p(Y]
m) become maximal?

Pitt & Miyung (2002), TICS



Bayesian model selection (BMS)

Bayes’ rules: p(ﬁ | y,m) —

p(y|0,m)p(0|m)

p(y|m)

Model evidence: p(y|m)= J p(y|8,m)-p(@|m)do

mmm)> accounts for both accuracy and complexity of the model

mmmm)> allows for inference about structure (generalisability) of the model

Various approximations, e.g.:

- negative free energy
- AIC
- BIC

Penny et al. (2004) Neurolmage

Model comparison via Bayes factor:

B~ P Im)
p(y|m,)




Bayes factors

To compare two models, we can just compare their log evidences.

But: the log evidence is just some number — not very intuitive!

A more intuitive interpretation of model comparisons is made
possible by Bayes factors:

B _pIm)
12
p(y|m,)
B, p(m,|y) | Evidence
1to3 50-75% weak
3 to 20 75-95% positive
Kass & Raftery classification: 20t0 150 | 95-99% strong
> 150 > 99% Very strong

Kass & Raftery 1995, J. Am. Stat. Assoc.



Example studies
of DCM for fMRI

DCM now an
established tool for
fMRI & M/EEG
analysis

>100 studies
published, incl. high-
profile journals

combinations of DCM
with computational
models




Thank you



